
B.ARUNKUMAR, Asst. Prof.,/ECE Page 1

UNIT I

BOOLEAN ALGEBRA AND LOGIC GATES

Introduction

Basically there are two types of signals in electronics,

i) Analog

ii) Digital

Digital systems

Advantages:

 The usual advantages of digital circuits when compared to analog circuits are:Digital systems

interface well with computers and are easy to control with software. New features can often be added

to a digital system without changing hardware.

 Often this can be done outside of the factory by updating the product's software. So, the product's

design errors can be corrected after the product is in a customer's hands.

 Information storage can be easier in digital systems than in analog ones. The noise- immunity of

digital systems permits data to be stored and retrieved without degradation.

 In an analog system, noise from aging and wear degrade the information stored.

 In a digital system, as long as the total noise is below a certain level, the information can be recovered

perfectly.

Disadvantages:

 In some cases, digital circuits use more energy than analog circuits to accomplish the same tasks, thus

producing more heat as well. In portable or battery-powered systems this can limit use of digital

systems.

 Digital circuits are sometimes more expensive, especially in small quantit ies.The sensed world is

analog, and signals from this world are analog quantities.

 Digital circuits are sometimes more expensive, especially in small quantities. The sensed world is

analog, and signals from this world are analog quantities.

 For example, light, temperature, sound, electrical conductivity, electric and magnetic fields are

analog.

Number Systems - Arithmetic Operations - Binary Codes- Boolean Algebra and Logic Gates - Theorems and

Properties of Boolean Algebra - Boolean Functions - Canonical and Standard Forms - Simplification of Boolean

Functions using Karnaugh Map - Logic Gates – NAND and NOR Implementations.

B.ARUNKUMAR, Asst. Prof.,/ECE Page 2

REVIEW OFNUMBER SYSTEMS

Many number systems are in use in digital technology. The most common are the decimal, binary,

octal, and hexadecimal systems. The decimal system is clearly the most familiar to us because it is tools

that we use every day.

Types of Number Systems are

 Decimal Number system

 Binary Number system

 Octal Number system

 Hexadecimal Number system

Table: Types of Number Systems

DECIMAL

BINARY

OCTAL

HEXADECIMAL

 0 0000 0 0
1 0001 1 1
2 0010 2 2

3 0011 3 3
4 0100 4 4

5 0101 5 5
6 0110 6 6

7 0111 7 7
8 1000 10 8
9 1001 11 9

10 1010 12 A
11 1011 13 B
12 1100 14 C

13 1101 15 D
14 1110 16 E

15 1111 17 F

Table: Numbersystemandtheir Base value

Number Systems

System Base Digits

Binary 2 0 1

Octal 8 0 1 2 3 4 5 6 7

Decimal 10 0 1 2 3 4 5 6 7 8 9

Hexadecimal 16 0 1 2 3 4 5 6 7 8 9 A B C D E F

B.ARUNKUMAR, Asst. Prof.,/ECE Page 3

Code Conversion:

 Convertingfromonecodeformtoanothercodeformiscalledcodeconversion,likeconvertingfrom binaryto

decimal orconverting from hexadecimal to decimal.

Binary-To-DecimalConversion:

 Anybinarynumbercanbeconvertedtoitsdecimalequivalent simplybysummingtogether
theweights of the variouspositions in the binarynumber whichcontaina1.

Binary Decimal

110112

=2
4
+2

3
+0

1
+2

1
+2

0 =16+8+0+2+1

Result 2710

Decimal to binary Conversion:

Division Remainder Binary

25/2 =12+remainder of1 1 (LeastSignificantBit)

12/2 =6 +remainder of0 0

6/2 =3 +remainder of0 0

3/2 =1 +remainder of1 1

½ =0 +remainder of1 1 (MostSignificantBit)

Result 2510 =110012

Binary to octal:

Example: 100 1110102=(100)(111)(010)2=4 7 28

Octal to Binary:

Decimal to octal:

Division Result Binary

177/8 =22+remainder of1 1 (LeastSignificantBit)

22/ 8 =2 +remainder of6 6

2 / 8 =0 +remainder of2 2 (Most Significant Bit)

Result 17710 =2618

Binary =0101100012

B.ARUNKUMAR, Asst. Prof.,/ECE Page 4

Octal to Decimal:

Example:

Decimal to Hexadecimal:

Division Result Hexadecimal

378/16 =23+remainder of10 A(LeastSignificantBit)23

23/16 =1 +remainder of7 7

1/16 =0 +remainder of1 1 (Most Significant Bit)

Result 37810 =17A16

Binary =00010111 10102

Binary-To-Hexadecimal:

Example: 1011 0010 11112= (1011) (0010) (1111)2=B2F16

Hexadecimal to binary:

Octal-To-Hexadecimal / Hexadecimal-To-Octal Conversion:

 Convert Octal (Hexadecimal) to Binary first.
 Regroup the binary number by three bits per group starting from LSB if Octal is required.

 Regroup the binary number by four bits per group starting from LSB if Hexadecimal is required.

Octal to Hexadecimal: (May 2014)

Octal Hexadecimal

=2 6 5 0

= 010 110101000 =0101 1010 1000(Binary)

Result =(5A8)16

B.ARUNKUMAR, Asst. Prof.,/ECE Page 5

Hexadecimal to octal:

Hexadecimal Octal

(5A8)16 =0101 1010 1000(Binary)

 =010 110101000(Binary)

Result =2 6 5 0(Octal)

1’s and2’s complement:

 Complements are used in digital computers to simplify the subtraction operation and for logical
manipulation.

 ThereareTWOtypesofcomplementsforeachbase-rsystem: theradixcomplementand the diminished
radix complement.

 The first is referred to as there’s complement and the second as the (r-

1)'scomplement,whenthevalueofthebaserissubstitutedinthename.Thetwo typesarereferredtoasthe
2's complement and 1's complement for binary numbers and the 10’s complement and 9's

complement for decimal numbers.

Note:

 T h e1’scompl ement o fabin arynu mberi sth en u mbert hat result sw henw ech an geall 1

’s to zeros and th e zeros t o on es .
 T h e2’s complement i s th e bi nary nu mber t hat result s wh en weadd1 t o th e1’s

compl ement .
 I t is u sed t o represent n egati ven u mbers.

2’s complement=1’scomplement+1

Example 1) : Find 1’s complement of (1101)2

Sol: 1 1 0 1 Number
 0 0 1 0 1’s complement

Example 2) : Find 2’s complement of (1001)2

Sol: 1 0 0 1 number

0 1 1 0 1’s complement
+ 1

0 1 1 1

Diminished Radix Complement:

Given a number N in base r having n digits, the (r - 1)’s complement of N, i.e., its diminished
radix complement, is defined as (rn- 1) - N.

The9 ’s comple mentof546700 is 999999-546700= 453299.

The9 ’s comple mentof012398 is 999999-012398= 987601.

B.ARUNKUMAR, Asst. Prof.,/ECE Page 6

Radix Complement:

The r’s complement of an n-digit number N in base r is defined as rn- N for N≠0 and as 0

for N = 0.

For examples:
The10’scomplementof 012398 is 987602
The10’scomplementof246700 is 753300

Model 1: (Dec 2009)

Using10’scomple ment, subtract72532-3250.

M = 72532

10’s complement o fN = +96750

Sum = 169282

Discard endcarry105 = -100000

Answer = 69282

Model 2:

Using10’scomple ment, subtract3250-72532.

M = 03250

10>s complementofN = +27468
Sum = 30718

Model 3:

Given the two binary numbers X= 1010100andY= 1000011, performthesubtraction

(a)X-Y and (b) Y-Xbyusing2’scomple ments. [NOV – 2019]

(a) X= 1010100

2 ’s complementofY= + 0111101

Sum = 10010001

Discard endcarry27 = -10000000

Answer:X-Y= 0010001

(b) Y= 1000011

2 ’s complement of X= 0101100

Sum = 1101111

There is no end carry.Therefore, the answer isY- X=-(2 ’s complementof1101111) =

-0010001.

B.ARUNKUMAR, Asst. Prof.,/ECE Page 7

Model 4:

Given the two binary numbers X=1010100 and Y= 1000011, perform the subtraction (a) X-Y and

(b) Y-X by using 1’s complements. (Dec 2009)

(a)X-Y= 1010100-1000011

X= 1010100

1’s complementofY= +0111100

Sum = 10010000

End around carry = + 1

Answer:X-Y= 0010001

(b)Y-X= 1000011-1010100

Y= 1000011

1’s complement of X= +0101011

Sum = 1101110

There is no end carry. Therefore ,the answer is Y- X=-(1’s complementof1101110)=

-0010001.

**

ARITHMETIC OPERATIONS

Binary Addition:

Rules of Binary Addition

 0 +0 =0

 0 +1 =1

 1 +0 =1

 1 +1 =0,and carry1tothe next most significant bit

Example:

Add: 00011010+00001100=00100110

 1 1

0

0

0

1

1

0

1

0

+0 0 0 0 1 1 0 0

0 0 1 0 0 1 1 0

mailto:End@around

B.ARUNKUMAR, Asst. Prof.,/ECE Page 8

 0 0 1 0 0 1 0 1

 - 0 0 0 1 0 0 0 1

0 0 0 1 0 1 0 0

Binary Subtraction:

Rules of Binary Subtraction

0 -0 =0

0 -1 =1,and borrow 1fromthe nextmoresignificantbit

1 -0 =1

1 -1 =0

Example:

Sub: 00100101-00010001= 00010100

Binary Multiplication:

RulesofBinaryMultiplication

0 x 0 =0

0 x 1 =0

1 x 0 =0

1 x 1 =1,andnocarryorborrowbits

Example:Multiply the following binary numbers:

(a) 0111 and 1101 (b) 1.011 and 10.01.

B.ARUNKUMAR, Asst. Prof.,/ECE Page 9

Binary Division:

Binarydivisionisthe repeatedprocess ofsubtraction,justasindecimaldivision.

Example: Divide the following

**

BINARYCODES

Explain the various codes used in digital systems with an example.(or)Explain in detail about Binary

codes with an example

 In digital systems a variety of codes are used to serve different purposes, such as data entry, arithmetic

operation, error detection and correction, etc.

 Selection of a particular codedepends on the requirement.

 Binarycodesarecodeswhicharerepresentedinbinarysystemwithmodification from the original ones.

 Codes can be broadly classified into five groups.

 (i) Weighted Binary Codes

(ii) Non-weighted Codes

(iii) Error-detection Codes

(iv) Error-correcting Codes

(v) Alphanumeric Codes

Weighted Binary Codes

 If each position of a number represents a specific weight then the coding scheme is called weighted

binary code.

BCD Code or 8421 Code:

 The full form of BCD is ‘Binary-Coded Decimal’. Since this is a coding scheme relating decimal and

binary numbers, four bits are required to code each decimal number.

B.ARUNKUMAR, Asst. Prof.,/ECE Page 10

 A decimal number in BCD (8421) is the same as its equivalent binary number only when the number

is between 0 and 9. A BCD number greater than 10 looks different from its equivalent binary number,

even though both contain 1’s and 0’s. Moreover,the binary combinations 1010 through 1111 are not

used and have no meaning in BCD.

 Consider decimal 185 and its corresponding value in BCD and binary:

(185)10= (0001 1000 0101)BCD = (10111001)2

 For example, (35)10 is represented as 0011 0101 using BCD code, rather than (100011)2

 Example: Give the BCD equivalent for the decimal number 589.

The decimal number is 5 8 9

 BCD code is 0101 1000 1001

 Hence, (589)10 = (010110001001)BCD

2421 Code:

 Another weighted code is 2421 code. The weights assigned to the four digits are 2, 4,2, and 1.

 The 2421 code is the same as that in BCD from 0 to 4. However, it varies from5 to 9.

 For example, in this case the bit combination 0100 represents decimal 4; whereas the bit combination

1101 is interpreted as the decimal 7, as obtained from 2 × 1 + 1 × 4+ 0 × 2 + 1 × 1 = 7.

 This is also a self-complementary code.

BCD Addition:

Examples:

 Consider the addition of 184 + 576 = 760 in BCD:

 Add the following BCD numbers: (a) 1001 and 0100, (b) 00011001 and 00010100

B.ARUNKUMAR, Asst. Prof.,/ECE Page 11

Non-weighted Codes

 It basically means that each position ofthe binary number is not assigned a fixed value.

 Excess-3 codes and Gray codes are such non-weighted codes.

Excess-3 code:

 Excess-3isanon- weightedcodeusedtoexpressdecimalnumbers.Thecodederivesitsnamefrom

thefactthateachbinarycodeisthecorresponding8421codeplus0011(3).

Example:1000of8421 (BCD)=1011in Excess-3

 Convert (367)10 into its Excess-3 code.

B.ARUNKUMAR, Asst. Prof.,/ECE Page 12

Graycode:

 Thegraycodebelongstoaclassofcodescalledminimumchangecodes,inwhichonlyonebitin

thecodechangeswhenmovingfrom onecodetothenext.

 TheGraycodeisnon-weightedcode,asthe positionofbitdoesnotcontainanyweight.In

digitalGraycodehasgot a specialplace.

Decimal

Number

BinaryCode GrayCode

0 0000 0000

1 0001 0001

2 0010 0011

3 0011 0010

4 0100 0110

5 0101 0111

6 0110 0101

7 0111 0100

8 1000 1100

9 1001 1101

10 1010 1111

11 1011 1110

12 1100 1010

13 1101 1011

14 1110 1001

15 1111 1000

 Thegraycodeisareflective digitalcodewhichhas the special propertythat

anytwosubsequentnumberscodes differ byonlyonebit. This is also calledaunit-distance code.

 Importantwhenananalogquantity mustbeconvertedtoadigitalrepresentation.Onlyonebitchanges

between two successiveintegers whicharebeing coded.

Example:

Binary toGray CodeConversion:

Any binary number can be converted into equivalent Gray code by the following steps:

i) the MSB of the Gray code is the same as the MSB of the binary number;

ii) the second bit next to the MSB of the Gray code equals the Ex-OR of the MSB and second bit of
the binary number; it will be 0 if there are same binary bits or it will be 1 for different binary
bits;

iii) the third bit for Gray code equals the exclusive-OR of the second and third bits of the binary
number, and similarly all the next lower order bits follow the same mechanism.

B.ARUNKUMAR, Asst. Prof.,/ECE Page 13

GrayCode to Binary Code Conversion:

Any Gray code can be converted into an equivalent binary number by the following steps:

i. The MSB of the binary number is the same as the MSB of the Gray code.

ii. the second bit next to the MSB of the binary number equals the Ex-OR of the MSB of the binary

number and second bit of the Gray code; it will be 0 if there are samebinary bits or it will be 1

for different binary bits;

iii. the third bit for the binary number equals the exclusive-OR of the second bit of the binary number

and third bit of the Gray code, and similarly all the next lower orderbits follow the same

mechanism.

Errordetectingcodes

 Whendataistransmittedfromonepointtoanother,likeinwirelesstransmission, o r itisjuststored,

likeinharddisksandmemories,therearechancesthatdata maygetcorrupted.

 Todetectthesedata errors,weusespecialcodes,whichareerrordetection codes.

Twotypes ofparity

 Evenparity:Checksifthereisanevennumberofones;ifso,paritybitiszero.Whenthenumberof

one’sisoddthenparitybitissetto 1.

 OddParity:Checksifthereisanoddnumberofones;ifso,paritybitiszero. Whenthenumberof

one’siseventhenparitybitis set to 1.

Errorcorrectingcode

 Error-correctingcodesnotonlydetecterrors,butalsocorrectthem.
 Thisisused normallyinSatellite communication,whereturn-arounddelayisveryhighasisthe

B.ARUNKUMAR, Asst. Prof.,/ECE Page 14

probabilityofdata gettingcorrupt.

Hamming codes

 Hammingcodeaddsaminimumnumberofbitstothedatatransmitted inanoisychannel,tobeableto

correct everypossible one-bit error.
 It candetect(not correct)two-biterrorsandcannotdistinguish between1-bitand2-bits

inconsistencies. Itcan't- ingeneral-detect 3(ormore)-bits errors.

Alphanumeric Codes

 An alphanumeric code is a binary code of a group of elements consisting of ten decimal digits, the

26 letters of the alphabet (both in uppercase and lowercase), and a certain number of special

symbols such as #, /, &, %, etc.

ASCII(AmericanStandardCode for InformationInterchange)

 It is actually a 7-bit code, where a character is represented with seven bits.

 The character is stored as one byte with one bit remainingunused.

 But often the extra bit is used to extend the ASCII to represent an additional128 characters.

EBCDIC codes

 EBCDICstandsforExtendedBinary CodedDecimalInterchange.

 It is also an alphanumeric code generally used in IBM equipment and in large computersfor

communicating alphanumeric data.

 For the different alphanumeric characters the code grouping in this code is different from the

ASCII code. It is actually an 8-bit code and a ninth bit is added as the parity bit.

**

B.ARUNKUMAR, Asst. Prof.,/ECE Page 15

Boolean Algebra and Theorems

Explain various theorems of Boolean algebra. (Nov – 2018)

Definition:

Boolean algebra is an algebraic structure defined by a set of elements B, together with two binary

operators. ‘+’ and ‘-‘, provided that the following (Huntington) postulates are satisfied;

Theorems of Boolean algebra:

The theorems of Boolean algebra can be used to simplify many a complex Boolean expression and also

to transform the given expression into a more useful and meaningful equivalent expression.

Postulates of Boolean algebra:

The postulates of a mathematical system form the basic assumptions from which itis possible to

deduce the rules, theorems, and properties of the system. The following are the important postulates of

Boolean algebra:

1. 1.1 = 1, 0+0 = 0.

2. 1.0 = 0.1 = 0, 0+1 = 1+0 = 1.

3. 0.0 = 0, 1+1 = 1

4. 1’ = 0 and 0’ = 1.

Many theorems of Boolean algebra are based on these postulates, which can be used to

simplifyBoolean expressions.

The operators and postulates have the following meanings:

 The binary operator + defines addition.

 The additive identity is 0.

 The additive inverse defines subtraction.

 The binary operator .(dot) defines multiplication.

 The multiplicative identity is 1.

 The only distributive law applicable is that of .(dot) over +:

B.ARUNKUMAR, Asst. Prof.,/ECE Page 16

a . (b + c) = (a . b) + (a . c)

Two‐Valued Boolean Algebra:

 A two‐valued Boolean algebra is defined on a set of two elements, B = {0, 1}, with

rulesfor the two binary operators + and .(dot) as shown in the following operator tables.

Duality Principle:

The duality principle states that every algebraic expression deducible from the postulates of

Boolean algebra remains valid if the operators and identity elements are interchanged. If the dual of an

algebraic expression is desired, we simply interchange OR and AND operators and replace 1’s b y 0’s and

0’s by 1’s.

DeMorgan’s theorem:

1. The complement of product is equal to the sum of their complements. (X.Y)’=X’+Y’

2. The complement of sum is equal to the product of their complements. (X+Y)’ = X’.Y’

Basic Theorems:

State and prove postulates and theorems of Boolean algebra.

B.ARUNKUMAR, Asst. Prof.,/ECE Page 17

B.ARUNKUMAR, Asst. Prof.,/ECE Page 18

Boolean Functions

 Boolean algebra is an algebra that deals with binary variables and logic operations. A Boolean

function described by an algebraic expression consists of binary variables, the constants 0 and 1, and

the logic operation symbols.

 For a given value of the binary variables, the function can be equal to either 1 or 0.

Example, consider the Boolean functionF1 = x + y’z

The function F1 is equal to 1 if x is equal to 1 or if both y’ and z are equal to 1. F1 is equalto 0 otherwise.

The complement operation dictates that when y’ = 1, y = 0. Therefore,F1 = 1 if x = 1 or if y = 0 and z = 1.

A Boolean function expresses the logical relationshipbetween binary variables and is evaluated by

determining the binary value ofthe expression for all possible values of the variables. The gate

implementation of F1 is shown below.

Example: Consensus Law: (function 4)

Complement of a function:

The complement of a function F is obtained from an interchange of 0’s for 1’sand 1’s for 0’s in the value

of F.

Example:

1.

B.ARUNKUMAR, Asst. Prof.,/ECE Page 19

2. Find the complement of the functions F1 = x’yz’ + x’y’z and F2 = x(y’z’ + yz).

 By applying DeMorgan’s theorems as many times as necessary, the complements areobtained as

follows:

3. Find the complement of the functions F1 = x’yz’ + x’y’z and F2 = x(y’z’ + yz) by taking their

duals and complementing each literals.

Solution:

**

Canonical and Standard forms:

Explain canonical SOP & POS form with suitable example.

 Binary logic values obtained by the logical functions and logic variables are in binary form. An

arbitrary logic function can beexpressed in the following forms.

 (i) Sum of the Products (SOP)

 (ii) Product of the Sums (POS)

 Boolean functions expressed as a sum of minterms or product of maxterms are said to be in

canonical form.

Product term:

 The AND function is referred to as a product. The variable in a product term can appear either in

complementary or uncomplimentary form. Example: ABC’

Sum term:

 The OR function is referred to as a Sum. The variable in a sum term can appear either in

complementary or uncomplimentary form. Example: A+B+C’

Sum of Product (SOP):

 The logical sum of two or more logical product terms is called sum of product expression. It is

basically an OR operation of AND operated variables. Example: Y=AB+BC+CA

Product of Sum (POS):

 The logical product of two or more logical sum terms is called product of sum expression. It is

basically an AND operation of OR operated variables. Example: Y=(A+B).(B+C).(C+A)

B.ARUNKUMAR, Asst. Prof.,/ECE Page 20

Minterm:

 A product term containing all the K variables of the function in either complementary or

uncomplimentary form is called Minterm or standard product.

Maxterm:

 A sum term containing all the K variables of the function in either complementary or

uncomplimentary form is called Maxterm or standard sum.

Canonical SOP Expression:

 The minterms whosesum defines the Boolean function are those which give the 1’s of the

function in a truth table.

Procedure for obtaining Canonical SOP expression:

 Examine each term in a given logic function. Retain if it is a minterm, continue to examine the

next term in the same manner.

 Check for the variables that are missing in each product which is not minterm. Multiply the

product by (X+X’), for each variable X that is missing.

 Multiply all the products and omit the redundant terms.

Example:

Express the Boolean function F = A + B’C as a sum of minterms. (May -10)(Nov – 2018)

Solution:

The function hasthree variables: A, B, and C.

 The first term A is missing two variables; therefore,

A = A(B + B’) = AB + AB’

This function is still missing one variable, so

A = AB(C + C’) + AB’(C + C’)

= ABC + ABC’ + AB’C + AB’C’

The second term B’C is missing one variable; hence,

B’C = B’C(A + A’) = AB’C + A’B’C

B.ARUNKUMAR, Asst. Prof.,/ECE Page 21

Combining all terms, we have

F = A + B’C =ABC + ABC’ + AB’C + AB’C’ + A’B’C

But AB’C appears twice, and according to theorem 1 (x + x = x), it is possible toremove one of

those occurrences. Rearranging the minterms in ascending order, wefinally obtain

F = A’B’C + AB’C’+ AB’C + ABC’ + ABC= m1 + m4 + m5 + m6 + m7

F(A, B, C) = ∑(1, 4, 5, 6, 7)

Example:Obtain the canonical sum of product form of the following function. (May 2014)

Canonical POS Expression:

 The Maxterms whose product defines the Boolean function are those which give the 1’s of the

function in a truth table.

Procedure for obtaining Canonical POS expression:

 Examine each term in a given logic function. Retain if it is a maxterm, continue to e xamine the

next term in the same manner.

 Check for the variables that are missing in each sum which is not maxterm. Add (X.X’), for each

variable X that is missing.

 Expand the expression using distributive property eliminate the redundant terms.

Example:

B.ARUNKUMAR, Asst. Prof.,/ECE Page 22

Example:

Obtain the canonical product of the sum form of the following function.

F (A, B, C) = (A + B′) (B + C) (A + C′) (Dec 2012)

Solution:

Karnaugh Map (K-map):

 Using Boolean algebra to simplify Boolean expressions can be difficult. The Karnaugh map provides

a simple and straight- forward method of minimizing Boolean expressions which represent

combinational logic circuits.

 A Karnaugh map is a pictorial method of grouping together expressions with common factors and

then eliminating unwanted variables.

 A Karnaugh map is a two-dimensional truth-table. Note that the squares are numbered so that the

binary representations for the numbers of two adjacent squares differ in exactly one position.

Rules for Grouping together adjacent cells containing 1's:

 Groups must contain 1, 2, 4, 8, 16 (2n) cells.

 Groups must contain only 1 (and X if don't care is allowed).

 Groups may be horizontal or vertical, but not diagonal.

 Groups should be as large as possible.

 Each cell containing a 1 must be in at least one group.

 Groups may overlap.

 Groups may wrap around the table. The leftmost cell in a row may be grouped with the rightmost

cell and the top cell in a column may be grouped with the bottom cell.

 There should be as few groups as possible.

Obtaining Product Terms

 If A is a variable that has value 0 in all of the squares in the grouping, then the complemented

form A is in the product term.

 If A is a variable that has value 1 in all of the squares in the grouping, then the true form A is in

the product term.

http://electronics-course.com/combinational-logic

B.ARUNKUMAR, Asst. Prof.,/ECE Page 23

 If A is a variable that has value 0 for some squares in the grouping and value 1 for others, then it

is not in the product term

The Format of K-Maps:

K-Maps of 2 Variables:

K-Maps of 3 Variables:

 Simplify the boolean function F (x, y, z) =

 Simplify the boolean function F (x, y, z) =

B.ARUNKUMAR, Asst. Prof.,/ECE Page 24

K-Maps of 4 Variables:

 Simplify the boolean function F(w,x,y, z) =

B.ARUNKUMAR, Asst. Prof.,/ECE Page 25

Note:

Karnaugh Maps - Rules of Simplification

The Karnaugh map uses the following rules for the simplification of expressions by grouping

together adjacent cells containing ones

 Groups may not include any cell containing a zero

 Groups may be horizontal or vertical, but not diagonal.

http://www.ee.surrey.ac.uk/Projects/Labview/common/glossary.html#Adj

B.ARUNKUMAR, Asst. Prof.,/ECE Page 26

 Groups must contain 1, 2, 4, 8, or in general 2n cells. That is if n = 1, a group will contain

two 1's since 21 = 2. If n = 2, a group will contain four 1's since 22 = 4.

 Each group should be as large as possible.

 Each cell containing a one must be in at least one group.

B.ARUNKUMAR, Asst. Prof.,/ECE Page 27

 Groups may overlap.

 There should be as few groups as possible, as long as this does not contradict any of the

previous rules.

Summmary:

1. No zeros allowed.

2. No diagonals.

3. Only power of 2 numbers of cells in each group.

4. Groups should be as large as possible.

5. Everyone must be in at least one group.

6. Overlapping allowed.

7. Wrap around allowed.

8. Fewest numbers of groups possible.

Don’t care combination:

 In certain digital systems, some input combinations never occur during the process of normal

operation because those input conditions are guaranteed never to occur. Such input combinations are

don’t care conditions.

B.ARUNKUMAR, Asst. Prof.,/ECE Page 28

Completely specified functions:

 If a function is completely specified, it assumes the value 1 for some input combinations and the

value 0 for others.

Incompletely specified functions:

 There are functions which assume the value 1 for some combinations and 0 for some other and

either 0 or 1 for the remaining combinations. Such a functions are called incompletely specified .

Prime Implicants:

A primeimplicant is a product term obtained by combining the maximum possible number

ofadjacent squares in the map. If a minterm in a square is covered by only one primeimplicant, that prime

implicant is said to be essential.

Quine-McCluskey (or) Tabulation Method

Minimization of Logic functions:

Steps:

 A set of all prime implicants of the function must be obtained.

 From the set of prime implicants, a set of essential implicants must be determined by

preparing a prime implicant chart.

 The minterm which are not covered by the essential implicants are taken into

consideration and a minimum cover is obtained from the remaining prime implicants.

Example: (Nov-06,07,10,May- 10,08)

Simplify the boolean function F(A,B,C,D)= ∑m (1,3,6,7,8,9,10,12,14,15) + ∑d (11,13) using Quine

McClusky method. (Apr 2017)

Step:1

B.ARUNKUMAR, Asst. Prof.,/ECE Page 29

Step:2

B.ARUNKUMAR, Asst. Prof.,/ECE Page 30

Step:3

Step:4

Logic gates

Explain about different types of logic gates. (OR) What are Universal gates? Construct any four basic

gates using only NOR gates and using only NAND gates. (May 2011)[NOV – 2019]

 A logic gate is an idealized or physical device implementing a Boolean function; that is, it performs a

logical operation on one or more logical inputs, and produces a single logical output.

Positive and Negative Logic

 The binary variables two states, i.e. the logic ‘0’ state or the logic ‘1’ state. These logic states in

digital systems such as computers.

 These are represented by two different voltage levels or two different current levels.

 If the more positive of the two voltage or current levels represents a logic ‘1’ and the less posit ive of

the two levels represents a logic ‘0’, then the logic system is referred to as a positive logic system.

 If the more positive of the two voltage or current levels represents a logic ‘0’ and the less positive of

the two levels represents a logic ‘1’, then the logic system is referred to as a negative logic system.

https://en.wikipedia.org/wiki/Boolean_function
https://en.wikipedia.org/wiki/Logical_operation

B.ARUNKUMAR, Asst. Prof.,/ECE Page 31

Truth Table

A truth table lists all possible combinations of input binary variables and the corresponding

outputs ofa logic system.

Universal Gates

 The OR, AND and NOT gates are the three basic logic gates as they together can be used to

construct the logic circuit for any given Boolean expression.

 The NOR and NAND gates have the property that they individually can be used to hardware-

implement a logic circuit corresponding to any given Boolean expression.

 That is, it is possible to use either only NAND gates or only NOR gates to implement any

Boolean expression. This is so because a combination of NAND gates or a combination of NOR

gates can be used to perform functions of any of the basic logic gates. It is for this reason that

NAND and NOR gates are universal gates.

B.ARUNKUMAR, Asst. Prof.,/ECE Page 32

NAND gatesandNOR gatesarecalleduniversalgates or universalbuildingblocks, as any

type of gates or logic functions can be implemented by these gates. Figures

Symbo lshowshow variouslogic functionscan be realizedby NAND gatesandFigures

Symbo lshow therealizationofvariouslogic gatesby NOR gates.

NOT function:F =A′AND function: F =AB

 Implementation of basic gates using NAND gate:

(convert AND gate to NAND gate)

 Implementation of basic gates using NOR gate:

(convert OR gate to NOR gate)

NAND–NOR implementations:

Implementation of basic gates using NAND gate:

Inverter (NOT gate):

AND gate:

B.ARUNKUMAR, Asst. Prof.,/ECE Page 33

OR gate:

Implementation of basic gates using NOR gate:

Inverter (NOT gate):

AND gate:

OR gate:

NAND–NOR implementations:

 Digital circuits are frequently constructed with NAND or NOR gates rather than with AND and

OR gates.

 NAND and NOR gates are easier to fabricate with electronic components and are the basic gates

used in all IC digital logic families.

 Because of the prominence of NAND and NOR gates in the design of digital c ircuits, rules and

procedures have been developed for the conversion from Boolean functions given in terms of

AND, OR, and NOT into equivalent NAND and NOR logic diagrams.

Only NAND/NOR gate circuit:

 A convenient way to implement a Boolean function with NAND/NOR gates is to obtain the

simplified Boolean function in terms of Boolean operators and then convert the function to

NAND/NOR logic.

 The conversion of an algebraic expression from AND, OR, and complement to NAND/NOR can

be done by simple circuit manipulation techniques that change AND–OR diagrams to

NAND/NOR diagrams.

B.ARUNKUMAR, Asst. Prof.,/ECE Page 34

NAND Implementation Procedure:

 Draw the AOI logic of given Boolean expression.

 Add bubble on input of OR gate & output of AND gate.

 Add an Inverter on each line that received bubbles.

 Eliminate double inversions

 Replace all by NAND gates

Example:

1. Implement F = AB + CD using only NAND gate.

2. Implement the following Boolean function with NAND gates:F (x, y, z) = (1, 2, 3, 4, 5, 7) (Apr

2018)

B.ARUNKUMAR, Asst. Prof.,/ECE Page 35

3. Implement the function F = (AB’ + A’B)(C + D’) using only NAND gate.

B.ARUNKUMAR, Asst. Prof.,/ECE Page 36

B.ARUNKUMAR, Asst. Prof.,/ECE Page 37

B.ARUNKUMAR, Asst. Prof.,/ECE Page 38

NOR Implementation Procedure:

B.ARUNKUMAR, Asst. Prof.,/ECE Page 39

 Draw the AOI logic of given Boolean expression.

 Add bubble on input of AND gate & output of OR gate.

 Add an Inverter on each line that received bubbles.

 Eliminate double inversions

 Replace all by NOR gates

Example:

1. Implement F = (A + B)(C + D)E using only NOR gate. (Apr 2018)

2. Implement F = (AB’ + A’B)(C + D’) using only NOR gate.

B.ARUNKUMAR, Asst. Prof.,/ECE Page 40

B.ARUNKUMAR, Asst. Prof.,/ECE Page 41

B.ARUNKUMAR, Asst. Prof.,/ECE Page 42

 Page 1

UNIT II

COMBINATIONAL LOGIC

COMBINATIONAL CIRCUITS

 A combinational circuit consists of logic gates whose outputs at any time are determined from only the

present combination of inputs.

 A combinational circuit performs an operation that can be specified logically by a set of Boolean

functions.

Sequential circuits:

 Sequential circuits employ storage elements in addition to logic gates. Their outputs are a function of

the inputs and the state of the storage elements.

 Because the state of the storage elements is a function of previous inputs, the outputs of a sequential

circuit depend not only on present values of inputs, but also on past inputs, and the circuit behavior must

be specified by a time sequence of inputs and internal states.

ANALYSIS PROCEDURE

Explain the analysis procedure. Analyze the combinational circuit the following logic diagram.

 (May 2015)

 The ana lys is o f a combina tiona l c ircu it requires tha t we de termine the func tion tha t

the c ircuit imp lements .

 The ana lys is can be pe rfo rmed manua lly by f ind ing the Boo lean func tions o r t ruth

tab le o r by us ing a compute r s imu la t ion p rogram.

 The f irs t step in the ana lys is is to make tha t the g iven c ircuit is combina tiona l o r

sequentia l.

 Once the log ic d iagram is ve r if ied to be combina tiona l, one can p roceed to obta in the

output Boo lean func tions or the t ruth tab le .

 To obtain the output Boolean functions from a logic diagram,

 Label all gate outputs that are a function of input variables with arbitrary symbols or names.

Determine the Boolean functions for each gate output.

 Label the gates that are a function of input variables and previously labeled gates with other

arbitrary symbols or names. Find the Boolean functions for these gates.

 Repeat the process in step 2 until the outputs of the circuit are obtained.

 By repeated substitution of previously defined functions, obtain the output Boolean functions in

terms of input variables.

Combinational Circuits – Analysis and Design Procedures - Binary Adder- Subtractor -Decimal Adder -
Binary Multiplier - Magnitude Comparator - Decoders – Encoders – Multiplexers - Introduction to HDL –

HDL Models of Combinational circuits.

 Page 2

Logic diagram for analysis example

The Boolean functions for the above outputs are,

 Proceed to obtain the truth table for the outputs of those gates which are a function of previously

defined values until the columns for all outputs are determined.

 Page 3

DESIGNPROCEDURE

Explain the procedure involved in designing combinational circuits.

 The design of combinational circuits starts from the specification of the design objective and culminates

in a logic circuit diagram or a set of Boolean functions from which the logic diagram can be obtained.

 The procedure involved involves the following steps,

 From the specifications of the circuit, determine the required number of inputs and outputs and assign a

symbol to each.

 Derive the truth table that defines the required relationship between inputs and outputs.

 Obtain the simplified Boolean functions for each output as a function of the input variables.

 Draw the logic diagram and verify the correctness of the design.

**

CIRCUITS FOR ARITHMETIC OPERATIONS

Half adder:

Construct a half adder with necessary diagrams. (Nov-06,May- 07)

 A half-adder is an arithmetic circuit block that can be used to add two bits and produce two outputs

SUM and CARRY.

 The Boolean expressions for the SUM and CARRY outputs are given by the equations

Truth Table:

Logic Diagram: Half adder using NAND gate:

 Page 4

Full adder:

Design a full adder using NAND and NOR gates respectively. (Nov -10)

 A Full-adder is an arithmetic circuit block that can be used to add three bits and produce two outputs

SUM and CARRY.

 The Boolean expressions for the SUM and CARRY outputs are given by the equations

Truth table:

Karnaugh map:

 K-Map for Sum K-Map for Carry

 The simplified Boolean expressions of the outputs are

S = X′A′B + X′AB′ + XA′B′ + XAB

C = AB + BX + AX

Logic diagram:

 Page 5

 The Boolean expressions of S and C are modified as follows

Full adder using Two half adder:

 Logic diagram according to the modified expression is shown Figure.

 Page 6

Half subtractor:

Design a half subtractor circuit. (Nov-2009)

 A half-subtractor is a combinational circuit that can be used to subtract one binary digit from anotherto

produce a DIFFERENCE output and a BORROW output.

 The BORROW output here specifies whether a ‘1’ has been borrowed to perform the subtraction. The

Boolean expression for difference and borrow is:

Logic diagram:

Full subtractor:

Design a full subtractor. (Nov-2009,07)

 A full subtractor performs subtraction operation on two bits, a minuend and a subtrahend, and also takes

into consideration whether a ‘1’ has already been borrowed by the previous adjacent lower minuend bit

or not.

 As a result, there are three bits to be handled at the input of a full subtractor, namely the two bits to be

subtracted and a borrow bit designated as Bin .

 There are two outputs, namely the DIFFERENCE output D and the BORROW output Bo. The

BORROW output bit tells whether the minuend bit needs to borrow a ‘1’ from the next possible higher

minuend bit. The Boolean expression for difference and barrow is:

 Page 7

K-Map:

Full subtractor using two half subtractor:

 Page 8

Parallel Binary Adder: (Ripple Carry Adder):

Explain about four bit adder. (or) Design of 4 bit binary adder – subtractor circuit. (Apr – 2019)

 A binary adder is a digital circuit that produces the arithmetic sum of two binary numbers. It can be

constructed with full adders connected in cascade, with the output carry from each full adder connected

to the input carry of the next full adder in the chain.

 Addition of n-bit numbers requires a chain of n- full adders or a chain of one-half adder and n-1 full

adders. In the former case, the input carry to the least significant position is fixed at 0.

 Figure shows the interconnection of four full-adder (FA) circuits to provide a four-bit binary ripple carry

adder.

 The carries are connected in a chain through the full adders. The input carry to the adder is C0, and it

ripples through the full adders to the output carry C4. The S outputs generate the required sum bits.

Example: Consider the two binary numbers A = 1011and B = 0011. Their sum S = 1110 is formed with

the four-bit adder as follows:

 The carry output of lower order stage is connected to the carry input of the next higher order stage.

Hence this type of adder is called ripple carry adder.

 In a 4-bit binary adder, where each full adder has a propagation delay of tp ns, the output in the fourth

stage will be generated only after 4tp ns.

 The magnitude of such delay is prohibitive for high speed computers.

 One method of speeding up this process is look-ahead carry addition which eliminates ripple carry

delay.

Complement of a number:

1’s complement:

The 1’s complement of a binary number is formed bychanging 1 to 0 and 0 to 1.

Example:

1. The 1’s complement of 1011000 is 0100111.

2. The 1’s complement of 0101101 is 1010010.

 Page 9

2’s complement:

 The 2’s complement of a binary number is formed by adding 1 with 1’s complement of a binary

number.

Example:

1. The 2’s complement of 1101100 is 0010100

2. The 2’s complement of 0110111 is 1001001

Subtraction using 2’s complement addition:

 The subtraction of unsigned binary number can be done by means o f complements.

 Subtraction of A-B can be done by taking 2’s complement of B and adding it to A.

 Check the resulting number. If carry present, the number is positive and remove the carry.

 If no carry present, the resulting number is negative, take the 2’s complement of result and put

negative sign.

Example:

Given the two binary numbers X = 1010100 and Y = 1000011, perform the subtraction

(a) X - Y and (b) Y - X by using 2’s complements.

Solution:

(a) X = 1010100

2’s complement of Y = + 0111101

Sum= 10010001

Discard end carry. Answer: X - Y = 0010001

(b) Y = 1000011

2’s complement of X= + 0101100

Sum= 1101111

There is no end carry. Therefore, the answer is Y - X = -(2’s complement of 1101111) =-0010001.

Parallel Binary Subtractor:

 The subtraction of unsigned binary numbers can be done most conveniently by meansof compleme nts.

The subtraction A - B canbe done by taking the 2’s complement of B and adding it to A . The 2’s

complement canbe obtained by taking the 1’s complement and adding 1 to the least significant pair

 Page 10

ofbits. The 1’s complement can be implemented with inverters, and a 1 can be added tothe sum through

the input carry.

 The circuit for subtracting A - B consists of an adder with inverters placed betweeneach data input B and

the corresponding input of the full adder. The input carry C in mustbe equal to 1 when subtraction is

performed. The operation thus performed becomes A,plus the 1’s complement of B , plus 1. This is equal

to Aplus the 2’s complement of B.

 For unsigned numbers, that gives A-B if A>=B or the 2’s complement of B - Aif A <B. For signed

numbers, the result is A - B, provided that there is no overflow.

Fast adder (or) Carry Look Ahead adder:

Design a carry look ahead adder circuit. (Nov-2010)

 The carry look ahead adder is based on the principle of looking at the lower order bits of the augend

and addend to see if a higher order carry is to be generated.

 It uses two functions carry generate and carry propagate.

Consider the circuit of the full adder shown in Fig. If we define two new binaryvariables

the output sum and carry can respectively be expressed as

Gi is called a carry generate, and it produces a carry of 1 when both Ai and Bi are 1,regardless of

the input carry Ci. Pi is called a carry propagate, because it determines whether a carry into stage i will

propagate into stage i + 1 (i.e., whether an assertion of Ci will propagate to an assertion of Ci+1).

We now write the Boolean functions for the carry outputs of each stage and substitutethe value

of each Ci from the previous equations:

 Page 11

 The construction of a four-bit adder with a carry lookahead scheme is shown in Fig.

 Each sum output requires two exclusive-OR gates.

 The output of the first exclusive-OR gate generates the Pi variable, and the AND gate generates the Gi

variable.

 The carries are propagated through the carry look ahead generator and applied as inputs to the second

exclusive-OR gate.

 All output carries are generated after a delay through two levels of gates.

 Thus, outputs S1 through S3 have equal propagation delay times. The two-level circuit for the output

carry C4 is not shown. This circuit can easily be derived by the equation-substitution method.

 Page 12

4 bit-Parallel adder/subtractor:

Explain about binary parallel / adder subtractor. [NOV – 2019]

 The addition and subtraction operations can be combined into one circuit with one common binary adder

by including an exclusive-OR gate with each full adder. A four-bit adder–subtractor circuit is shown in

Fig.

 The mode input M controls the operation. When M = 0, the circuit is an adder, and when M = 1, the

circuit becomes a subtractor.

 Page 13

 It performs the operations of both addition and subtraction.

 It has two 4bit inputs A3A2A1A0 and B3B2B1B0.

 The mode input M controls the operation when M=0 the circuit is an adder and when M=1 the circuits

become subtractor.

 Each exclusive-OR gate receives input M and one of the inputs of B .

 When M = 0, we have B xor0 = B. The full adders receive the value of B , the input carry is 0, and the

circuit performs A plus B . This results in sum S3S2S1S0and carry C4.

 When M = 1, we have B xor 1 = B’ and C0 = 1. The B inputs are all complemented and a 1 is added

through the input carry thus producing 2’s complement of B.

 Now the data A3A2A1A0will be added with 2’s complement of B3B2B1B0to produce the sum i.e., A-B if

A≥B or the 2’s complement of B-A if A<B.

Comparators

Design a 2 bit magnitude comparator. (May 2006)

It is a combinational circuit that compares two numbers and determines their relative magnitude. The

output of comparator is usually 3 binary variables indicating:

A<B, A=B, A>B

1-bitcomparator: Let’s begin with 1bit comparator and from the name we can easily make out that this

circuit would be used to compare 1bit binary numbers.

 Page 14

A B A>B A=B A<B

0 0 0 1 0

1 0 1 0 0

0 1 0 0 1

1 1 0 1 0

For a 2-bit comparator we have four inputs A1 A0 and B1 B0 and three output E (is 1 if two numbers are

equal) G (is 1 when A>B) and L (is 1 when A<B) If we use truth table and K-map the result is

Design of 2 – bit Magnitude Comparator.

The truth table of 2-bit comparator is given in table below

 Page 15

Truth table:

K-Map:

 Page 16

Logic Diagram:

4 bit magnitude comparator:

Design a 4 bit magnitude comparators. (Apr – 2019)

Input

 Page 17

Function Equation

 Page 18

BCD Adder:

Design to perform BCD addition.(or) What is BCD adder? Design an adder to perform arithmetic

addition of two decimal bits in BCD. (May -08)(Apr 2017,2018)[Nov – 2019]

 Consider the arithmetic addition of two decimal digits in BCD, together with an input carry from a

previous stage. Since each input digit does not exceed 9, the output sum cannot be greater than 9 + 9 + 1

= 19, the 1 in the sum being an input carry.

 Suppose we apply two BCD digits to a four-bit binary adder. The adder will form the sum in binary and

produce a result that ranges from 0 through 19. These binary numbers are listed in Table and are labeled

by symbols K, Z8, Z4, Z2, and Z1. K is the carry, and the subscripts under the letter Z represent the

weights 8, 4, 2, and 1 that can be assigned to the four bits in the BCD code.

 Page 19

 A BCD adder that adds two BCD digits and produces a sum digit in BCD is shown in Fig. The two

decimal digits, together with the input carry, are first added in the top four-bit adder to produce the

binary sum.

 When the output carry is equal to 0, nothing is added to the binary sum. When it is equal to 1, binary

0110 is added to the binary sum through the bottom four-bit adder.

 The condition for a correction and an output carry can be expressed by the Boolean function

C = K + Z8Z4 + Z8Z2
 The output carry generated from the bottom adder can be ignored, since it supplies information already

available at the output carry terminal.

 A decimal parallel adder that adds n decimal digits needs n BCD adder stages. The output carry from

one stage must be connected to the input carry of the next higher order stage.

Binary Multiplier:

Explain about binary Multiplier.

 Multiplication of binary numbers is performed in the same way as multiplication of decimal numbers.

The multiplicand is multiplied by each bit of the multiplier, starting from the least significant bit. Each

such multiplication forms a partial product.

 Successive partial products are shifted one position to the left. The final product is obtained from the

sum of the partial products.

 A combinational circuit binary multiplier with more bits can be constructed in a similar fashion.

 A bit of the multiplier is ANDed with each bit of the multiplicand in as many levels as there are bits in

the multiplier.

 The binary output in each level of AND gates is added with the partial product of the previous level to

form a new partial product. The last level produces the product.

 Page 20

 Page 21

CODE CONVERSION

Design a binary to gray converter. (Nov-2009)(Nov 2017)

Binary to Grayconverter

Gray code is unit distance code.

Input code: Binary [B3 B2 B1 B0]

output code: Gray [G3 G2 G1 G0]

Truth Table

B3 B2 B1 B0 G3 G2 G1 G0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1

0 0 1 0 0 0 1 1

0 0 1 1 0 0 1 0

0 1 0 0 0 1 1 0

0 1 0 1 0 1 1 1

0 1 1 0 0 1 0 1

0 1 1 1 0 1 0 0

1 0 0 0 1 1 0 0

1 0 0 1 1 1 0 1

1 0 1 0 1 1 1 1

1 0 1 1 1 1 1 0

1 1 0 0 1 0 1 0

1 1 0 1 1 0 1 1

1 1 1 0 1 0 0 1

1 1 1 1 1 0 0 0

K-MAP FORG3: K-MAP FORG2:

G3=B3 G2=B3’B2+B3B2’=B3 B2

 Page 22

K-MAP FORG1: K-MAP FORG0:

G1=B1’B2+B1B2’=B1 B2 G0=B1’ B0+B1B0’=B1 B0

Logic diagram:

Gray to Binary converter:

Design a gray to binary converter.(OR) Design a combinational circuit that converts a four bit gray

code to a four bit binary number using exclusive – OR gates. (Nov-2009) [NOV – 2019]

Gray code is unit distance code.

Input code: Gray [G3 G2 G1 G0]

output code: Binary [B3 B2 B1 B0]

 Page 23

Truth Table:

K-Map:

 Page 24

Logic Diagram:

BCD to Excess -3 converter:

Design a combinational circuits to convert binary coded decimal number into an excess-3 code.

 Excess-3 code is modified form of BCD code. (Nov-06,09,10, May-08,10)

 Excess -3 code is derived from BCD code by adding 3to each coded number.

 Page 25

Truth table:

K-Map:

 Page 26

Logic Diagram

Excess -3 to BCD converter:

Design a combinational circuit to convert Excess-3 to BCD code. (May 2007)

Truth table:

 Page 27

 Page 28

 Page 29

Design Binary to BCD converter.

Truth table:

K-map:

 Page 30

Logic diagram:

 Page 31

DECODERS AND ENCODERS

Decoder:

Explain about decoders with necessary diagrams. (Apr 2018)(Nov 2018)

 A decoder is a combinational circuit that converts binary information from n input lines to a maximum

of 2n unique output lines. If the n -bit coded information has unused combinations, the decoder may

have fewer than 2n outputs.

 The purpose of a decoder is to generate the 2n (or fewer) minterms of n input variables, shown below for

two input variables.

2 to 4 decoder:

3 to 8 Decoder:

Design 3 to 8 line decoder with necessary diagram. May -10)

Truth table:

 Page 32

Logic diagram:

Design for 3 to 8 decoder with 2 to 4 decoder:

 Not that the two to four decoder design shown earlier, with its enable inputs can be used to build a three

to eight decoder as follows.

 Page 33

Implementation of Boolean function using decoder:

 Since the three to eight decoder provides all the minterms of three variables, the realisation of a

function in terms of the sum of products can be achieved using a decoder and OR gates as follows.

Example: Implement full adder using decoder.

Sum is given by ∑m(1, 2, 4, 7) while Carry is given by ∑m(3, 5, 6, 7) as given by the minterms

each of the OR gates are connected to.

Design for 4 to 16 decoder using 3 to 8 decoder: Design 5 to 32 decoder using 3 to 8 and 2 to 4 decoder:

BCD to seven segment decoder
Design a BCD to seven segment code converter. (May-06,10, Nov- 09)

 Page 34

Truth table:

K-Map:

 Page 35

Logic Diagram:

 The specification above requires that the output be zeroes (none of the segments are lighted up) when

the input is not a BCD digit.

 In practical implementations, this may defer to allow representation of hexadecimal digits using the

seven segments.

 Page 36

Encoder:

Explain about encoders. (Nov 2018)

 An encoder is a digital circuit that performs the inverse operation of a decoder. An encoder has 2n (or

fewer) input lines and n output lines. The output lines, as an aggregate, generate the binary code

corresponding to the input value.

Octal to Binary Encoder:

 The encoder can be implemented with OR gates whose inputs are determined directly from the truth

table. Output z is equal to 1 when the input octal digit is 1, 3, 5, or 7.

 Output y is 1 for octal digits 2, 3, 6, or 7, and output x is 1 for digits 4, 5, 6, or 7. These conditions can

be expressed by the following Boolean output functions:

The encoder can be implemented with three OR gates.

Truth table:

 Another ambiguity in the octal-to-binary encoder is that an output with all 0’s is generated when all the

inputs are 0; but this output is the same as when D0 is equal to 1. The discrepancy can be resolved by

providing one more output to indicate whether at least one input is equal to 1.

 Page 37

Logic Diagram:

Priority Encoder:

Design a priority encoder with logic diagram.(or) Explain the logic diagram of a 4 – input priority

encoder. (Apr – 2019)

A priority encoder is an encoder circuit that includes the priority function. The operationof the

priority encoder is such that if two or more inputs are equal to 1 at the same time,the input having the

highest priority will take precedence.

Truth table:

Modified Truth table:

 Page 38

K-Map:

Logic Equations:

Logic diagram:

 Page 39

MULTIPLEXERS AND DEMULTIPLEXERS

Multiplexer: (MUX)

Design a 2:1 and 4:1 multiplexer.

 A multiplexer is a combinational circuit that selects binary information from one of many input lines and

directs it to a single output line. The selection of a particular input line is controlled by a set of selection

lines.

 Normally, there are 2n input lines and n selection lines whose bit combinations determine which input is

selected.

2 to 1 MUX:

A 2 to 1 line multiplexer is shown in figure below, each 2 input lines A to B is applied to one input of an

AND gate. Selection lines S are decoded to select a particular AND gate. The truth table for the 2:1 mux

is given in the table below.

 To derive the gate level implementation of 2:1 mux we need to have truth table as shown in figure. And

once we have the truth table, we can draw the K-map as shown in figure for all the cases when Y is

equal to '1'.

Truth table:

Logic Diagram:

 Page 40

4 to 1 MUX:

 A 4 to 1 line multiplexer is shown in figure below, each of 4 input lines I0 to I3 is applied to one input

of an AND gate.

 Selection lines S0 and S1 are decoded to select a particular AND gate.

 The truth table for the 4:1 mux is given in the table below.

Logic Diagram:

Truth Table:

Problems :

Example: Implement the Boolean expression using MUX

 F(A,B,C,D) = ∑m(0,1,5,6,8,10,12,15) (Apr 2017, Nov 2017)

SELECT

INPUT

OUTPUT

S1 S0 Y

0 0 I0

0 1 I1

1 0 I2

1 1 I3

 Page 41

Example: Implement the boolean function using Multiplexer. [NOV – 2019]

F (x, y, z) = Σm (1, 2, 6, 7)

 Solution:

Implementation table:

Multiplexer Implementation:

Example: 32:1 Multiplexer using 8:1 Mux (Nov 2018) (Apr – 2019)

 Page 42

DEMULTIPLEXERS:

Explain about demultiplexers.

 The de-multiplexer performs the inverse function of a multiplexer, that is it receives information on one

line and transmits its onto one of 2n possible output lines.

 The selection is by n input select lines. Example: 1-to-4 De-multiplexer

Logic Diagram: Truth Table:

INPUT OUTPUT

E D S0 S1 Y0 Y1 Y2 Y3

1 1 0 0 1 0 0 0

1 1 0 1 0 1 0 0

1 1 1 0 0 0 1 0

1 1 1 1 0 0 0 1

 Page 43

Example:

1. Implement full adder using De-multiplexer.

2. Implement the following functions using de-multiplexer.

f1 (A,B,C) = ∑m(1,5,7), f2 (A,B,C) = ∑m(3,6,7)

Solution:

 Page 44

Parity Checker / Generator:

 A parity bit is an extra bit included with a binary message to make the number of 1’s either odd or

even. The message, including the parity bit, is transmitted and then checked at the receiving end for

errors. An error is detected if the checked parity does not correspond with the one transmitted.

 The circuit that generates the parity bit in the transmitter is called a parity generator. The circuit that

checks the parity in the receiver is called a parity checker.

 In even parity system, the parity bit is ‘0’ if there are even number of 1s in the data and the parity bit

is ‘1’ if there are odd number of 1s in the data.

 In odd parity system, the parity bit is ‘1’ if there are even number of 1s in the data and the parity bit is

‘0’ if there are odd number of 1s in the data.

3-bit Even Parity generator:

Truth Table:

Logic Diagram:

 Page 45

4-bit Even parity checker:

Truth Table:

Logic Diagram:

INTRODUCTION TO HDL

 In electronics, a hardware description language or HDL is any language from a class of computer

languages and/or programming languages for formal description of digital logic and electronic circuits.

 HDLs are used to write executable specifications of some piece of hardware.

 A simulation program, designed to implement the underlying semantics of the language statements,

coupled with simulating the progress of time, provides the hardware designer with the ability to model a

piece of hardware before it is created physically.

 Logic synthesis is the process of deriving a list of components and their interconnection (called net list)

from the model of a digital system.

 Logic Simulation is the representation of the structure and behavior of a digital logic synthesis through

the use of a computer.

 The standard HDLs that supported by IEEE.

 VHDL (very High Speed Integrated Circuit HDL)

 Verilog HDL

 Page 46

HDL MODELS OF COMBINATIONAL CIRCUITS

The Verilog HDL model of a combinational circuit can be described in any one of the following

modeling styles,

Gate level modeling-using instantiations of predefined and user defined primitive gates.

Dataflow modeling using continuous assignment with the keyword assign.

Behavioral modeling using procedural assignment statements with the keyword always.

Gate level modeling

In this type, a circuit is specified by its logic gates and their interconnections. Gate level modeling

provides a textual description of a schematic diagram. The verilog HDL includes 12basic gates as

predefined primitives. They are and, nand, or, nor, xor, xnor, not &buf.

Data flow modeling

Data flow modeling of combinational logic uses a number of operators that act on operands to produce

desired results. Verilog HDL provides about 30 different operators. Data flow modeling uses continuous

assignments and the keyword assign. A continuous assignment is a statement that assigns a value to a

net. The data type family net is used to represent a physical connection between circuit elements.

HDL for2-to-4 line decoder

 Page 47

Behavioral modeling

 Behavioral modeling represents digital circuits at a functional and algorithmic level. It is used mostly to

describe sequential circuits, but can also be used to describe combinational circuits.

 Behavioral descriptions use the keyword always, followed by an optional event control expression and a

list of procedural assignment statements.

Page 1

UNIT III

SYNCHRONOUS SEQUENTIAL LOGIC

SEQUENTIAL CIRCUITS

Sequential circuits:

 Sequential circuits employ storage elements in addition to logic gates. Their outputs are a function of

the inputs and the state of the storage elements.

 Because the state of the storage elements is a function of previous inputs, the outputs of a sequential

circuit depend not only on present values of inputs, but also on past inputs, and the circuit behavior

must be specified by a time sequence of inputs and internal states.

Types of sequential circuits:

There are two main types of sequential circuits, and their classification is a function ofthe timing

of their signals.

1. Synchronous sequential circuit:

It is a system whose behaviorcan be defined from the knowledge of its signals at discrete

instants of time.

2. Asynchronous sequential circuits:

The behaviorof an asynchronous sequential circuit depends upon the input signals at any

instant of timeand the order in which the inputs change. The storage elements commonly used

in asynchronoussequential circuits are time-delay devices.

LATCHES AND FLIP FLOPS

Flip-Flop:

 The storage elements (memory) used in clocked sequential circuits are called flipflops. A flip-flop is

a binary storage device capable of storing one bit of information. In a stable state, the output of a flip-

flop is either 0 or 1.

 A sequential circuit may use many flip-flops to store as many bits as necessary. The block diagram of

a synchronous clocked sequential circuit is shown in Fig.

Sequential Circuits - Storage Elements: Latches , Flip-Flops - Analysis of Clocked Sequential Circuits - State
Reduction and Assignment - Design Procedure - Registers and Counters - HDL Models of Sequential

Circuits

Page 2

 A storage element in a digital circuit can maintain a binary state indefinitely (as long as power is

delivered to the circuit), until directed by an input signal to switch states.

 The major differences among various types of storage elements are in the number of inputs they

possess and in the manner in which the inputs affect the binary state.

Latch:

 The storage elements that operate with signal levels (rather than signal transitions) are referred to as

latches; those controlled by a clock transition are flip-flops.Latches are said to be level sensitive

devices; flip-flops are edge-sensitive devices.

SR Latch: Using NOR gate

Realize SR Latch using NOR and NAND gates and explain its operation.

 The SR latch is a circuit with two cross-coupled NOR gates or two cross-coupled NAND gates, and

two inputs labeled S for set and R for reset.

 The SR latch constructed with two cross-coupled NOR gates is shown in Fig.

 The latch has two useful states. When output Q = 1 and Q‟= 0, the latch is said to be in the set state .

When Q = 0 and Q‟ = 1, it is in the reset state . Outputs Q and Q‟ are normally the complement of

each other.

 However, when both inputs are equal to 1 at the same time, a condition in which both outputs are

equal to 0 (rather than be mutually complementary) occurs.

 If both inputs are then switched to 0 simultaneously, the device will enter an unpredictable or

undefined state or a metastable state. Consequently, in practical applications, setting both inputs to 1

is forbidden.

Page 3

FLIP FLOPS

Triggering of Flip Flops:

Explain about triggering of flip flops in detail.

 The state of a latch or flip-flop is switched by a change in the control input. This momentary change

is called a trigger, and the transition it causes is said to trigger the flip-flop.

Level Triggering:

 SR, D, JK and T latches are having enable input.

 Latches are controlled by enable signal, and they are level triggered, either positive level triggered or

negative level triggered as shown in figure (a).

 The output is free to change according to the input values, when active level is maintained at the

enable input.

Edge Triggering:

 A clock pulse goes through two transitions: from 0 to 1 and the return from 1 to 0.

 As shown in above Fig (b) and (c)., the positive transition is defined as the positive edge and the

negative transition as the negative edge.

Explain the operation of flipflops.(Nov 2017)

FLIP FLOP CONVERSIONS

The purpose is to convert a given type A FF to a desired type B FF using some conversion logic.

Page 4

The key here is to use the excitation table, which shows the necessary triggering signal (S,R, J,K, D and

T) for a desired flipflop state transition :

Excitation table for all flip flops:

1. SR Flip Flop to JK Flip Flop

The truth tables for the flip flop conversion are given below. The present state is represented by

Qp and Qp+1 is the next state to be obtained when the J and K inputs are applied.

For two inputs J and K, there will be eight possible combinations. For each combination of J, K and Qp,

the corresponding Qp+1 states are found. Qp+1 simply suggests the future values to be obtained by the

JK flip flop after the value of Qp.

The table is then completed by writing the values of S and R required to get each Qp+1 from the

corresponding Qp. That is, the values of S and R that are required to change the state of the flip flop from

Qp to Qp+1 are written.

http://www.circuitstoday.com/flip-flop-conversion

Page 5

2.JK Flip Flop to SR Flip Flop

This will be the reverse process of the above explained conversion. S and R will be the external

inputs to J and K. As shown in the logic diagram below, J and K will be the outputs of the combinational

circuit. Thus, the values of J and K have to be obtained in terms of S, R a nd Qp. The logic diagram is

shown below.

A conversion table is to be written using S, R, Qp, Qp+1, J and K. For two inputs, S and R, eight

combinations are made. For each combination, the corresponding Qp+1 outputs are found. The outputs

for the combinations of S=1 and R=1 are not permitted for an SR flip flop. Thus the outputs are

considered invalid and the J and K values are taken as “don‟t cares”.

Page 6

3.SR Flip Flop to D Flip Flop

As shown in the figure, S and R are the actual inputs of the flip flop and D is the external input of

the flip flop. The four combinations, the logic diagram, conversion table, and the K-map for S and R in

terms of D and Qp are shown below.

4.D Flip Flop to SR Flip Flop

D is the actual input of the flip flop and S and R are the external inputs. Eight possible

combinations are achieved from the external inputs S, R and Qp. But, since the combination of S=1 and

R=1 are invalid, the values of Qp+1 and D are considered as “don‟t cares”. The logic diagram showing

the conversion from D to SR, and the K-map for D in terms of S, R and Qp are shown below.

http://www.circuitstoday.com/flip-flop-conversion

Page 7

5.JK Flip Flop to T Flip Flop

J and K are the actual inputs of the flip flop and T is taken as the external input for conversion.

Four combinations are produced with T and Qp. J and K are expressed in terms of T and Qp. The

conversion table, K-maps, and the logic diagram are given below.

6.JK Flip Flop to D Flip Flop

D is the external input and J and K are the actual inputs of the flip flop. D and Qp make four

combinations. J and K are expressed in terms of D and Qp. The four combination conversion table, the

K-maps for J and K in terms of D and Qp, and the logic diagram showing the conversion from JK to

D are given below.

7.D Flip Flop to JK Flip Flop

AUQ: How will you convert a D flip-flop into JK flip-flop? (AUQ: Dec 2009,11,Apr 2017)

In this conversion, D is the actual input to the flip flop and J and K are the external inputs. J, K

and Qp make eight possible combinations, as shown in the conversion table below. D is expressed in

terms of J, K and Qp.The conversion table, the K-map for D in terms of J, K and Qp and the logic

diagram showing the conversion from D to JK are given in the figure below.

http://www.circuitstoday.com/flip-flop-conversion
http://www.circuitstoday.com/flip-flop-conversion
http://www.circuitstoday.com/flip-flop-conversion

Page 8

MEALY AND MOORE MODELS

Write short notes on Mealy and Moore models in sequential circuits.

 In synchronous sequential circuit the outputs depend upon the order in which its input variables

change and can be affected at discrete instances of time.

General Models:

 There are two models in sequential circuits. They are:

1. Mealy model

2. Moore model

Moore machine:

 In the Moore model, the outputs are a function of present state only.

Mealy machine:

 In the Mealy model, the outputs are a function of present state and external inputs.

Page 9

Difference between Moore model and Mealy model.

Example:

A sequential circuit with two ‘D’ Flip-Flops A and B, one input (x) and one output (y).

The Flip-Flop input functions are:

DA= Ax+ Bx

DB= A’xand

the circuit output function is, Y= (A+ B) x’.

(a) Draw the logic diagram of the circuit, (b) Tabulate the state table, (c) Draw the state diagram.

Solution:

Page 10

State table:

State diagram:

COUNTERS

Counter:

 A counter is a register (group of Flip-Flop) capable of counting the number of clock pulse

arriving at its clock input.

 A counter that follows the binary number sequence is called a binary counter.

 Counter are classified into two types,

1. Asynchronous (Ripple) counters.

2. Synchronous counters.

Page 11

 In ripple counter, a flip- flop output transition serves as clock to next flip-flop.

o With an asynchronous circuit, all the bits in the count do not all change at the same time.

 In a synchronous counter, all flip-flops receive common clock.

o With a synchronous circuit, all the bits in the count change synchronously with the

assertion of the clock

 A counter may count up or count down or count up and down depending on the input control.

Uses of Counters:

The most typical uses of counters are

 To count the number of times that a certain event takes place; the occurrence of event to be

counted is represented by the input signal to the counter

 To control a fixed sequence of actions in a digital system

 To generate timing signals

 To generate clocks of different frequencies

Modulo 16 ripple /Asynchronous Up Counter

Explain the operation of a 4-bit binary ripple counter.

 The output of up-counter is incremented by one for each clock transition.

 A 4-bit asynchronous up-counter consists of 4JK Flip-Flops.

 The external clock signal is connected to the clock input of the first FlipFlop.

 The clock inputs of the remaining Flip-Flops are triggered by the Q output of the previous stage.

 We know that in JK Flip-Flop, if J=1 , K=1 and clock is triggered the past output will be

complemented.

 Initially, the register is cleared, QDQCQBQA =0000.

 During the first clock pulse, Flip-Flop A triggers, therefore QA=1, QB=QC=QD=0.

QDQCQBQA=0001

 At the second clock pulse FLipFlop A triggers, therefore QA changes from 1 to 0, which triggers

FlipFlop B, therefore QB=1,QA=QC=QD=0

QDQCQBQA=0010

 At the third clock pulse FlipFlop A triggers, therefore QA changes from 0 to 1, This never triggers

FlipFlop B because 0 to 1 transition gives a positive edge triggering,but here the FlipFlops are

triggered only at negative edge(1 to 0 transition) therefore QA=QB=1, QC=QD=0.

QDQCQBQA=0011

Page 12

 At the fourth clock pulse Flip-Flop A triggers, therefore QA changes from 1 to 0, This triggers

FlipFlop B therefore QB changes from 1 to 0. The change in QB from 1 to 0 triggers C Flip-Flop,

 Therefore QC changes from 0 to 1. Therefore QA=QB=QD=0, QC=1.

QDQCQBQA=0100

Truth table:

Page 13

Timing diagram:

Modulo 16 /4 bit Ripple Down counter/ Asynchronous Down counter

Explain about Modulo 16 /4 bit Ripple Down counter.

 The output of down-counter is decremented by one for each clock transition.

 A 4-bit asynchronous down-counter consists of 4JK Flip-Flops.

 The external clock signal is connected to the clock input of the first Flip-Flop.

 The clock inputs of the remaining Flip-Flops are triggered by the Q output of the previous stage.

Page 14

 We know that in JK Flip-Flop, if J=1 , K=1 and clock is triggered the past output will be

complemented.

 Initially, the register is cleared, QDQCQBQA =0000.

 During the first clock pulse, Flip-Flop A triggers, therefore QA changes from 0 to 1 also QA

changes from 1 to 0.This triggers Flip-Flop B, therefore QB changes from 0 to 1, also QB changes

from 1 to 0which triggers Flip-FlopC. Hence QC changes from 0 to 1 and QC changes from 1 to

0, which further triggers, Flip-Flop D.

 QDQCQBQA=1111

QD QC QB QA=0000

 During the second clock pulse Flip-Flop A triggers, therefore QA changes from 1 to 0 also QA

changes from 0 to 1 which never triggers B Flip-Flop. Therefore C and D Flip-Flop are not

triggered.

QDQCQBQA =1110

 The same procedure repeats until the counter decrements upto 0000.

Page 15

Page 16

Asynchronous Up/Down Counter:

Explain about Asynchronous Up/Down counter.

 The up-down counter has the capability of counting upwards as well as downwards. It is also

called multimode counter.

 In asynchronous up-counter, each flip-flop is triggered by the normal output Q of the preceding

flip- flop.

 In asynchronous down counter, each flip-flop is triggered by the complement output Q of the

preceding flip-flop.

 In both the counters, the first flip- flop is triggered by the clock output.

 If Up/Down =1, the 3-bit asynchronous up/down counter will perform up-counting. It will count

from 000 to 111. If Up/Down =1 gates G2 and G4 are disabled and gates G1 and G3 are enabled.

So that the circuit behaves as an up-counter circuit.

 If Up/Down =0, the 3-bit asynchronous up/down counter will perform down-counting. It will

count from 111 to 000. If Up/Down =0 gates G2 and G4 are enabled and gates G1 and G3 are

disabled. So that the circuit behaves as an down-counter circuit.

Page 17

4- bitSynchronous up-counter:

Explain about 4-bit Synchronous up-counter.

 In JK Flip-Flop, If J=0, K=0 and clock is triggered, the output never changes. If J=1 and K=1 and

the clock is triggered, the past outpit will be complemented.

Initially the register is cleared QDQCQBQA= 0000.

During the first clock pulse, JA= KA = 1, QA becomes 1, QB, QC, QD remains 0.

QDQCQBQA= 0001.

During second clock pulse, JA= KA = 1, QA=0.

JB= KB = 1, QB =1, QC, QD remains 0.

QDQCQBQA= 0010.

During third clock pulse, JA= KA = 1, QA=1.

JB= KB = 0, QB =1, QC, QD remains 0.

QDQCQBQA= 0011.

During fourth clock pulse, JA= KA = 1, QA=0.

JB= KB = 1, QB =0

JC= KC = 1, QC=1

QD remains 0

QDQCQBQA= 0100.

The same procedure repeats until the counter counts up to 1111.

Page 18

Page 19

4- bit Synchronous down-counter:

Explain about 4-Bit Synchronous down counter.

In JK Flip-Flop, If J=0, K=0 and clock is triggered, the output never changes. If J=1 and K=1 and the

clock is triggered, the past outpit will be complemented.

Initially the register is cleared QDQCQBQA= 0000

 QDQCQBQA= 1111

During the first clock pulse, JA= KA = 1, QA=1

 JB= KB = 1, QB =1

JC= KC = 1, QC =1

JD= KD = 1, QD =1

QDQCQBQA= 1111

 QDQCQBQA= 0000

During the second clock pulse, JA= KA = 1, QA =0

 JB= KB = 0, QB =1

JC= KC = 0, QC =1

JD= KD = 0, QD =1

QDQCQBQA= 1110

 QDQCQBQA= 0001

Page 20

During the second clock pulse, JA= KA = 1, QA =1

 JB= KB = 1, QB =0

JC= KC = 0, QC =1

JD= KD = 0, QD =1

QDQCQBQA= 1101

The process repeats until the counter down-counts up to 0000.

Page 21

Modulo 8 Synchronous Up/Down Counter:

Explain about Modulo 8 Synchronous Up/Down Counter.

In synchronous up-counter the QA output is given to JB, KBand QA. QB is given to JC, KC. But in

synchronous down –counter QAoutput is given toJB, KB and QA. QB is given to JC, KC.

A control input Up/Down is used to select the mode of operation.

If Up/Down =1, the 3-bit asynchronous up/down counter will perform up-counting. It will count from

000 to 111. If Up/Down =1 gates G2 and G4 are disabled and gates G1 and G3 are enabled. So that the

circuit behaves as an up-counter circuit.

If Up/Down =0, the 3-bit asynchronous up/down counter will perform down-counting. It will count from

111 to 000. If Up/Down =0 gates G2 and G4 are enabled and gates G1 and G3 are disabled. So that the

circuit behaves as an down-counter circuit.

Page 22

**

DESIGN OF RIPPLE COUNTERS

3-Bit Asynchronous Binary Counter/ modulo -7 ripple counter:

Design a 3-bit binary counter using T-flip flops. [NOV – 2019]

Explain about 3-Bit Asynchronous binary counter. (Nov -2009)

The following is a three-bit asynchronous binary counter and its timingdiagram for one cycle. It

works exactly the same way as a two-bitasynchronous binary counter mentioned above, except it has

eight statesdue to the third flip-flop.

Asynchronous counters are commonly referred to as ripple counters forthe following reason: The

effect of the input clock pulse is first “felt” byFFO. This effect cannot get to FF1 immediately because of

thepropagation delay through FF0. Then there is the propagation delaythrough FF1 before FF2 can be

Page 23

triggered. Thus, the effect of an inputclock pulse “ripples” through the counter, taking some time, due

topropagation delays, to reach the last flip- flop.

ANALYSIS OF CLOCKED SEQUENTIAL CIRCUIT

Design and analyze of clocked sequential circuit with an example.

The analysis of a sequential circuit consists of obtaining a table or a diagram for the time sequence of

inputs, outputs and internal states.

Fig: Example of sequential circuit

Consider the sequential circuit is shown in figure. It consists of two D flip-flops A and B, an input x and

an output y.

A state equation specifies the next state as function of the present state and inputs.

A(n+1)= A(n)x(n)+B(n)x(n)

B(n +1)= A (n)x(n)

They can be written in simplified form as,

A(n+1) = Ax +Bx

B(n +1) = Ax

Page 24

The present state value of the output can be expressed algebraically as,

y(n) =(A+ B) x

DESIGN OF SYNCHRONOUS COUNTERS

Design and analyze of clocked sequential circuit with an example.

The procedure for designing synchronous sequential circuit is given below,

1. From the given specification, Draw the state diagram.

2. Plot the state table.

3. Reduce the number of states if possible.

4. Assign binary values to the states and plot the transition table by choosing the type of Flip-Flop.

5. Derive the Flip flop input equations and output equations by using K-map.

6. Draw the logic diagram.

State Diagram:

 State diagram is the graphical representation of the information available in a state table.

 In state diagram, a state is represented by a circle and the transitions between states are indicated by

directed lines connecting the circles.

State Table:

 A state table gives the time sequence of inputs, outputs ad flip flops states. The table consists of

four sections labeled present state, next state, input and output.

 The present state section shows the states of flip flops A and B at any given time „n‟. The input

section gives a value of x for each possible present state.

 The next state section shows the states of flip flops one clock cycle later, at time n+1.

The state table for the circuit is shown. This is derived using state equations.

Page 25

The above state table can also be expressed in different forms as follows.

The state diagram for the logic circuit in below figure.

Flip-Flop Input Equations:

The part of the circuit that generates the inputs to flip flops is described algebraically by a set of Boolean

functions called flip flop input equations.

Page 26

The flip flop input equations for the circuit is given by,

DA =Ax +Bx

DB =A x

**

Design of a Synchronous Decade Counter Using JK Flip- Flop (Apr 2018, Nov 2018)

A synchronous decade counter will count from zero to nine and repeat thesequence.

State diagram:

The state diagram of this counter is shown in Fig.

Excitation table:

K-Map:

Page 27

Page 28

Logic Diagram:

Design of an Asynchronous Decade Counter Using JK Flip- Flop.

An asynchronous decade counter will count from zero to nine and repeat thesequence. Since the

JK inputs are fed from the output of previous flip- flop,therefore, the design will not be as complicated as

the synchronous version.

At the ninth count, the counter is reset to begin counting at zero. The NAND gateis used to reset

the counter at the ninth count. At the ninth count the outputs offlip-flop Q3 and Q1 will be high

simultaneously. This will cause the output ofNAND to go to logic “0” that would reset the flip- flip. The

logic design of thecounter is shown in Fig.

Page 29

Design of a Synchronous Modulus-Six Counter Using SR Flip-Flop(Nov 2017)

The modulus six counters will count 0, 2, 3, 6, 5, and 1 and repeat the sequence.This modulus six

counter requires three SR flip-flops for the design.

State diagram:

Truth table:

K-Map:

Page 30

Logic Diagram:

SHIFT REGISTERS

Explain various types of shift registers. (or) Explain the operation of a 4-bit bidirectional shift register.

(Or) What are registers? Construct a 4 bit register using D-flip flops and explain the operations on the

register.(or) With diagram explain how two binary numbers are added serially using shift registers.

(Apr – 2019)[NOV – 2019]

 A register is simply a group of Flip-Flops that can be used to store a binary number.

 There must be one Flip-Flop for each bit in the binary number.

 For instance, a register used to store an 8-bit binary number must have 8 Flip-Flops.

Page 31

 The Flip-Flops must be connected such that the binary number can be entered (shifted) into the

register and possibly shifted out.

 A group of Flip-Flops connected to provide either or both of these functions is called a shift register.

 A register capable of shifting the binary information held in each cell to its neighboring cell in a

selected direction is called a shift register.

 There are four types of shift registers namely:

1. Serial In Serial Out Shift Register,

2. Serial In Parallel Out Shift Register

3. Parallel In Serial Out Shift Register

4. Parallel In Parallel Out Shift Register

1.SerialIn Serial Out Shift Register

 The block diagram of a serial out shift register is as below.

 As seen, it accepts data serially .i.e., one bit at a time on a single input line. It produces the stored

information on its single output also in serial form.

 Data may be shifted left using shift left register or shifted right using shift right register.

Shift Right Register

 The circuit diagram using D flip-fops is shown in figure

Page 32

 As shown in above figure,the clock pulse is applied to all the flip-flops simultaneously.

 The output of each flip-flop is connected to D input of the flip-flop at its right.

 Each clock pulse shifts the contents of the register one bit position to the right.

 New data is entered into stage A whereas the data presented in stage D are shifted out.

 For example, consider that all stages are reset and a steady logical 1 is applied to the serial input

line.

 When the first clock pulse is applied, flip- flop A is set and all other flip-flops are reset.

 When the second clock pulse is applied,the „1‟ on the data input is shifted into flip-flop A and „1‟

that was in flip flop A is shifted to flip-flop B.

 This continues till all flip-flop sets.

 The data in each stage after each clock pulse is shown in table below

Shift Left Register

The figure below shows the shift left register using D flip- flops.

Page 33

 The clock is applied to all the flip-flops simultaneously. The output of each flip-flop is connected

to D input of the flip- flop at its left.

 Each clock pulse shifts the contents of the register one bit position to the left.

 Let us illustrate the entry of the 4-bit binary number 1111 into the register beginning with the

right most bit.

 When the first clock pulse is applied, flip flop A is set and all other flip-flops are reset.

 When second clock pulse is applied, ‟1‟ on the data input is shifted into flip-flop A and „1‟ that

was in flip flop A is shiftedtoflip-flop B. This continues fill all flip- flop are set.

 The data in each stage after each clock pulse is shown in table below.

2. Serial in Parallel out shift register:

A 4 bit serial in parallel out shift register is shown in figure.

Page 34

 It consists of one serial input and outputs are taken from all the flip- flops simultaneously.

 The output of each flip-flop is connected to D input of the flip- flop at its right. Each clock pulse

shifts the contents of the register one bit position to the right.

 For example, consider that all stages are reset and a steady logical „1‟ is applied to the serial

input line.

 When the first clock pulse is applied flip flop A is set and all other flip-flops are reset.

 When the second pulse is applied the „1‟ on the data input is shifted into flip flop A and „1‟ that

was in flip flop A is shifted into flip-flop B. This continues till all flip- flops are set. The data in

each stage after each clock pulse is shown in table below.

3. Parallel In Serial Out Shift register:

 For register with parallel data inputs, register the bits are entered simultaneously into their

respective stages on parallel lines.

 A four bit parallel in serial out shift register is shown in figure. Let A,B,C and D be the four

parallel data input lines and SHIFT/LOAD is a control input that allows the four bits of data to be

entered in parallel or shift the serially.

Page 35

 When SHIFTS/LOAD is low, gates G1 through G3 are enabled, allowing the data at parallel

inputs to the D input of its respective flip-flop. When the clock pulse is applied the flip-flops with

D=1 will set and those with D=0 will reset, thereby storing all four bits simultaneously.

 When SHIFT/LOADis high. AND gates G1 through G3 are disabled and gates G4 through G6are

enabled, allowing the data bits to shifts right from one stage to next. The OR gates allow either

the normal shifting operation or the parallel data entry operation, depending on which AND gates

are enabled by the level on the SHIFT/LOAD input.

Parallel In Parallel OutShift Register:

 In parallel in parallel out shift register, data inputs can be shifted either in or out of the register in

parallel.

 A four bit parallel in parallel out shift register is shown in figure.Let A, B, C, D be the four

parallel data input lines and QA,QB,QC and QD be four parallel data output lines. The

SHIFT/LOAD is the control input that allows the four bits data to enter in parallel or shift the

serially.

Page 36

 When SHIFT/LOAD is low, gates G1 through G3 are enabled, allowing the data at parallel inputs

to the D input of its respective flip-flop. When the clock pulse is applied, the flip-flops with D =1

willset those with D=0 will reset thereby storing all four bits simultaneously. These are

immediately available at the outputs QA,QB,QC and QD.

 When SHIFT/LOAD is high, gates G1, through G3 are disabled and gates G4 through G6 are

enabled allowing the data bits to shift right from one stage to another. The OR gates allow either

the normal shifting operation or the parallel data entry operation, depending on which AND gates

are enabled by the level on the SHIFT/LOAD input.

Universal Shift Register:

Explain about universal shift register.(Apr -2018)

 A register that can shift data to right and left and also has parallel load capabilities is called

universal shift register.

 It has the following capabilities.

1. A clear control to clear the register to 0.

2. A clock input to synchronize the operations.

Page 37

3. A shift right control to enable the shift right operation and the associated serial input

and output lines.

4. A shift left control to enable the shift left operation and the associated serial input and

output lines.

5. A parallel load control to enable a parallel transfer and the n input lines.

6. n parallel output lines.

7. A control state that leaves the information in the register unchanged in the presence of

the clock.

 The diagram of 4-bit universal shift register that has all that capabilities listed above is shown in

figure. It consists of four D flip-flop and four multiplexers.Allthe multiplexers have two common

selection inputs S1 and S0. Input 0 is selected when S1S0=00, input 1 is selected when S1S0=01

and similarly for other two inputs.

Page 38

 The selection inputs control the mode of operation of the register. When S1S0=00, the present

value of the register is applied to the D inputs of the flip-flop. The next clock pulse transfers into

each flip-flop the binary value it held previously, and no change of state occurs.

 When S1S0=01,terminal 1 of the multiplexer inputs has a path to be the D inputs of the flip-flops.

This causes a shift right operation, with the serial input transferred into flip-flop A3.

 When S1S0=10, a shift left operation results with the other serial input going into flip- flop A0.

Finally, when S1 S0 = 11, the binary information on the parallel input lines is transferred into the

register simultaneously during the next clock edge. The function table is shown below.

**

SHIFT REGISTER COUNTERS:

Explain about Johnson and Ring counter. (Nov 2018)

Most common shift register counters are Johnson counter and ring counter.

Johnson counter:

 A 4 bit Johnson counter using D flip-flop is shown in figure. It is also called shift counter or

twisted counter.

 The output of each flip-flop is connected to D input of the next stage. The inverted output of last

flip- flop QDis connected to the D input of the first flip-flop A.

 Initially, assume that the counter is reset to 0. i.e., QA QB QC QD =0000. The value at DB =

DC=DD=0, whereas DA =1 since QD.

Page 39

 When the first clock pulse is applied, the first flip- flop A is set and the other flip-flops are reset.

i.e., QA QB QC QD =1000.

 When the second clock pulse is applies, the counter is QA QB QC QD = 1100. This continues and

the counter will fill up with 1‟s from left to right and then it will fill up with 0‟s again.

 The sequence of states is shown in the table. As observed from the table, a 4-bit shift counter has

8 states. In general, an n-flip-flop Johnson counter will result in 2n states.

The timing diagram of Johnson counter is as follows:

Ring Counter:

A 4- bit ring counter using D Flip-Flop is shown in figure.

Page 40

 As shown in figure, the true output of flip- flop D. i.e., QD is connected back to serial input of flip-

flop A.

 Initially, 1 preset into the first flip-flop and the rest of the flip-flops are cleared i.e.,

QAQBQCQD=1000.

 When the first clock pulse is applied, the second flip-flop is set to 1while the other three flip flops

are reset to 0.

 When the second clock pulse is applied, the „1‟ in the second flip-flop is shifted to the third flip-

flop and so on.

 The truth table which describes the operation of the ring counter is shown below.

 As seen a 4-bit ring counter has 4 states. In general, an n-bit ring counter has n states. Since a

single „1‟ in the register is made to circulate around the register, it is called a ring counter. The

timing diagram of the ring counter is shown in figure.

Page 41

HDL FOR SEQUENTIAL CIRCUITS

Write coding in HDL for various flip-flops.

Page 42

Page 43

Page 44

Page 45

Page 46

Page 47

Test Bench:

Page 48

Write the VHDL Code for 4-Bit Binary Up Counter and explain. (Apr 2019)

VHDL Code for 4-Bit Binary Up Counter

The clock inputs of all the flip-flops are connected together and are triggered by the input pulses. Thus,

all the flip-flops change state simultaneously (in parallel).

libraryieee;
use ieee.std_logic_1164.all;

useieee.std_logic_unsigned.all;
entityvhdl_binary_counter is
port(C, CLR : in std_logic;

Q : out std_logic_vector(3 downto 0));
endvhdl_binary_counter;

architecturebhv of vhdl_binary_counter is
signaltmp: std_logic_vector(3 downto 0);
begin

process (C, CLR)
begin

if (CLR=‟1′) then
tmp<= "0000";
elsif (C‟event and C=‟1′) then

tmp<= tmp + 1;

Page 49

end if;
end process;

Q <= tmp;

. Page1

UNIT IV

ASYNCHRONOUS SEQUENTIAL LOGIC

Draw the block diagram of a typical asynchronous sequential circuit and explain. Also write the

procedure for obtaining transition table from circuit diagram of an asynchronous sequential circuit.

[Nov – 2019]

Sequential circuits without clock pulses are called Asynchronous Sequential Circuits. They are classified

into 2 types:

1. Fundamental mode circuits

2. Pulse mode circuits

Fundamental Mode Circuits:

It assumes that:

 The input variables should change only when the circuit is stable.

 Only one input variable can change at a given instant of time.

 Inputs and outputs are represented by levels

Pulse Mode Circuits:

It assumes that:

 Inputs and outputs are represented by pulses.

 The width of the pulse is long enough for the circuit to respond to the input.

 The pulse width must not be so long that it is still present after the new state is reached.

Explain about Asynchronous Sequential circuits. (Apr 2017, Nov 2017)

Block diagram of Asynchronous Sequential circuits

Analysis and Design of Asynchronous Sequential Circuits – Reduction of State and FlowTables – Race-free State

Assignment – Hazards.

. Page2

The communication oftwo units, with each unithavingits own independent clock, must be donewith

asynchronous circuits.

Stable state:

If the circuit reaches a steady state condition with present state yi = next state Yi for i=1,2,3…K then

the circuit is said to be stable state. A transition from one stable to another occurs only in response to a

change in an input variable.

Unstable state:

In a circuit,ifpresent state yi ≠ next state Yi for i=1,2,3…K then the circuit is said to be unstable

state. The circuit will be in continuous transition till it reached a stable state.

ANALYSISPROCEDURE OF FUNDAMENTAL MODE SEQUENTIAL CIRCUITS

Explain in detail about analysis procedure of fundamental mode sequential circuits. (or) Outline the

procedure for analyzing asynchronous sequential circuits. (Apr 2019) (Dec2011)

 The analysis of asynchronous sequential circuits consists of obtaining a table or a diagram that

described the sequence of internal states and outputs as a function of changes in the input

variables.

 Let us consider the asynchronous sequential circuit is shown in figure.

 The analysis of the circuit starts by considering the excitation variables (Y1 and Y2) as outputs and

the secondary variables (y1 and y2) as inputs.

Step1:

 The Boolean expressions are,

Y1= xy1 +xꞌy2

Y2= x y1ꞌ+xꞌy2

Step 2:

 Thenext step is to plottheY1and Y2functions in amap

. Page3

 Combiningthe binaryvalues in correspondingsquares, the followingtransition table is obtained.

 ThetransitiontableshowsthevalueofY=Y1Y2 insideeachsquare.ThoseentrieswhereY=yarecircled to

indicateastable condition.

 The circuit has four stable total states, y1y2x=000,011,110, and 101 and four unstable total states-

001, 010, 111 and 100.

 The state table of the circuit is shown below:

 This table provides thesame information as the transition table.

Step 3:

Transition table

 The transition table is obtained by combining the maps for Y1and Y2.

 The transition table is a table which gives the relation between present state, input and next

. Page4

state. If the secondary variables y1 y2 is same as excitation variables Y1 Y2, the state is said to be stable.

 The stable states are indicated by circles. An uncircled entry represents an unstable state.

 In a transition table, usually there will be at least one stable state in each row. Otherwise, all

the states in that row will be unstable.

Step 4:

Primitive Flowtable

 Ina flow table thestatesarenamed bylettersymbols. Examples of flow tables areas follows:

 In order to obtain thecircuitdescribed bya flow table, it is necessaryto assign to each

stateadistinct value.

Explain the problems in asynchronous circuits with examples. (Dec 2010,Dec 2012, Dec 2013)

Cycles

 A cycle occurs when an asynchronous circuit makes a transition through a series of unstable state.

 When a state assignment is made so that it introduces cycles, care must be taken that it terminates

with a stable state.

 Otherwise, the circuit will go from one unstable state to another, until the inputs are changed.

 Examples of cycles are:

Fig: Examples ofcycles

. Page5

RaceConditions

 Araceconditionexistsinanasynchronouscircuitwhentwoormorebinary state variableschangevalue

inresponsetoachangeinaninputvariable.

 Whenunequaldelaysare encountered,araceconditionmay cause thestatevariableto changein an

unpredictable manner.

 Ifthe final stable statethat the circuitreachesdoes not depend on the orderin which

thestatevariables change, theraceis calledanoncritical race.

 Ifthe final stable statethat the circuitreachesdepends on the orderin which thestatevariables

change, theraceis calleda critical race.

 Examples of noncritical racesareillustratedin the transition tables below:

 Initial stable state is y1y2x = 000 and then input changes from 0 to 1.

 The state variables y1y2 must change from 00 to 11,(race condition).

Possible transitions are

00 11
00 01(y2 faster) 11
00 10(y1 faster) 11

 In all cases final stable state is same, which results in a non-critical race condition.

 Examples of critical racesareillustratedin the transition tables below:

. Page6

Fig: Examples ofcritical races

 The initial stable state is y1y2 x=000 and let us consider that the input changes from 0 to 1. Then ,

the state variables must change from 00 to 11.

 If they change simultaneously, the final total state is 111.

 Due to unequal propagation delay, if y2 changes to 1 before y1 does, then the circuit goes to total

stable state y1y2 x=011 and remains there.

 If y1 changes first, then the circuit will be in total stable state is y1y2 x=101.

 Hence the race is critical because the circuit goes to different stable states depending on the order in

which the state variables change.

CIRCUITSWITH SRLATCHES

 TheSRlatchisusedasatime-delayelementinasynchronoussequentialcircuits.TheNORgateSRlatch and

its truth table are:

Fig: SR latchwith NORgates

 The feedback is morevisible when the circuitisredrawn as:

. Page7

 TheBoolean function ofthe output is:

The reduced excitation function,

and the transition table for the circuitis

 The behavior of the SR latch can be investigated from the transition table. The condition to be

avoided is that both S and R inputs must not be 1 simultaneously.

 This condition is avoided when SR = 0 (i.e., ANDing of S and R must always result in 0). When

SR = 0 holds at all times, the excitation function derived previously:

can beexpressed as:

 The NAND gate SR latch and its truth table are:

. Page8

Fig: SR latchwith NAND gates

 TheconditiontobeavoidedhereisthatbothSandRnotbe0simultaneouslywhichissatisfiedwhenS′R′=0.

 The excitation functionforthe circuitis:

Difference between Synchronous and Asynchronous Sequential Circuit (Apr 2019)

Synchronous Sequential Circuit Asynchronous Sequential Circuit

 It is easy to design. It is difficult to design.

 A clocked flip flop acts as memory
element.

 An unclocked flip flop or time delay is
used as memory element.

 They are slower as clock is involved.
 They are comparatively faster as no clock

is used here.

 The states of memory element is
affected only at active edge of clock,
if input is changed.

 The states of memory element will
change any time as soon as input is
changed.

ANALYSISEXAMPLE

Analyze the Asynchronous sequential circuit with suitable example.

Consider the following circuit:

https://www.techtud.com/computer-science-and-information-technology/digital-electronics

. Page9

Fig: Example ofa circuit with SR latches

The first step is to obtain the Booleanfunctions forthe S and R inputs in each latch:

The next step is to check if SR = 0 is satisfied:

The result is 0 because

The next step is to derive the transition table of the circuit. The excitation functions are derived from the

relation Y = S + R′y as:

Next a composite map for Y = Y1Y2 is developed

. Page10

 Investigation of the transition table reveals that the circuit is stable.

 There is a critical race condition when the circuit is initially in total state y1y2x1x2 = 1101 and x2

changes from 1 to 0.

 If Y1 changes to 0 before Y2, the circuit goes to total state 0100 instead of 0000.

ImplementationExample of Asynchronous sequential circuits. (Nov 2018)

Consider the followingtransition table:

SR LatchExcitationTable:

UsefulforobtainingtheBooleanfunctionsforSandRandthecircuit’slogicdiagramfromagiven transition table.

FromtheinformationgiveninthetransitiontableandtheSRlatchexcitationtable,wecanobtainmaps forthe S

and R inputs of thelatch:

. Page11

 X represents a don’tcarecondition.

 Themaps arethen used to derivethe simplifiedBoolean functions:

 ThelogicdiagramconsistsofanSRlatchandgatesrequiredtoimplementtheSandRBoolean functions.

 The circuitwhen aNOR SR latch is usedis as shown below:

With a NANDSR latch the complemented valuesforSand R mustbeused.

DESIGNPROCEDURE

Explain in detail about design procedure. May 2011

Thereareanumberofstepsthatmustbecarriedoutinordertominimizethecircuitcomplexityandto

produceastable circuitwithoutcritical races.Briefly, thedesign steps areas follows:

Obtain a primitive flow table from thegivenspecification.

Reducethe flow table bymerging rows inthe primitive flow table.

Assign binarystates variables to eachrowof the reduced flowtable to obtain thetransition table.

Assign outputvalues to thedashes associated with the unstable states to obtainthe output maps.

Simplifythe Boolean functions of the excitation and output variables and draw the logic

diagram.

 Thedesign process will be demonstrated bygoingthrough aspecificexample:

Designagatedlatchcircuitwithtwoinputs,G(gate)andD(data),andoneoutputQ.Thegatedlatchis amemory

. Page12

elementthatacceptsthevalueofDwhenG=1andretainsthisvalueafterGgoesto0.Once G =0, a change in D

does notchangethe valueofthe output Q.

(Or)

Design an asynchronous sequential circuit with two inputs D and G with one output Z. Whenever G is

1, input D is transferred to Z. When G is 0, the output does not change for any change in D. Use SR

latch for implementation of the circuit.

PrimitiveFlowTable

 Aprimitiveflowtableisaflowtablewithonlyonestabletotalstateineachrow.Thetotalstateconsists ofthe

internal statecombined with the input.

 To derivethe primitive flow table, first a tablewithallpossible total states in thesystem is

needed:

 Eachrowintheabovetablespecifiesatotalstate;theresulting primitivetableforthegatedlatchis shown

below:

 First,wefillinonesquareineachrowbelonging tothestablestateinthatrow.Nextrecallingthat both

inputsarenotallowedtochangeatthesametime,weenterdashmarksineachrowthatdiffersintwo

ormorevariablesfromtheinputvariablesassociatedwiththestablestate.

. Page13

Reduction of primitive flow table:

 Two or more rows in the primitive flow table can be merged into one row if there are non-

conflicting states and outputs on each of the columns.

 This can be done by implication table and merger diagram.

 The implication table has all states except the first vertically and all states except the last across

bottom horizontally.

 The tick () mark denotes that the pair (rows) is compatible.

 Two states are compatible, if the states are identical with non-conflicting outputs.

 The cross (x) mark implies non-compatible.

 The compatible pairs are

(a,b), (a,c), (a,d), (b,e), (b,f), (c,d), (e,f)

Merger Diagram:

 The maximum compatible sets can be obtained from merger diagram as shown in figure.

 The merger diagram is a graph in which each state is represented by a dot placed along the

circumference of a circle.

 Lines are drawn between any two corresponding dot that form a compatible pair.

 Based on the geometrical patterns formed by the lines, all the possible compatibilities can be

obtained.

. Page14

 An isolated dot represents a state that is not compatible with any other state.

 A line represents a compatible pair.

 A triangle constitutes a compatible with three states.

 An n-state compatible is represented in the merger diagram by an n-sided polygon with all its

diagonal connected.

 So, the maximal compatibilities are

(a,b) , (a,c,d) , (b,e,f)

Closed covering condition:

 In the above, if only (a,c,d) and (b,e,f) are selected, all the six states are

incuded.

 This set satisfies the covering condition.

 Thus, the rowsa,c,d can be merged as one row and b,e,f states can be

merged as another row.

 Consider a,c,d =a and b,e,f =b

. Page15

 A race free binary assignment is made and transition table and output

map is obtained.

a -> 0, b-> 1

Logic Diagram using SR Latch:

. Page16

Design an asynchronous sequential circuit that has two inputs X2 and X1 and one output Z. the output

is to remain a 0 as long as X1 is 0. The first change in X2 that occurs while X1 is a 1 will cause output Z

to be 1. The output Z will remain 1 until Xreturns to 0. (Apr 2018)

Step 1:

Step 2: Primitive Flow Table

. Page17

Step 3: A reduced flow table is obtained using implication table and merger diagram.

The compatible pairs are (a,b) (a,c) (b,d) (e,f).

The merger diagram is used to find more compatible pairs.

We obtain 4 separate lines.

Therefore, the compatible pairs are again (a,b) (a,c) (b,d) (e,f).

If we remove (a,b), then the remaining pairs (a,c) (b,d) (e,f) covers all the 6 states.

Therefore the reduced flow table is as follows:

Step 4: In order to avoid critical race, one more stable state is added and values are assigned for states.

. Page18

Step 5: The transition table and output maps are as follows:

. Page19

Design an asynchronous sequential circuit with inputs X1 and X2 and one output Z. Initially and at

any time if both the inputs are 0, output is equal to 0. When X1 and X2 becomes 1, Z becomes 1.

When second input also becomes 1, Z = 0; The output stays at 0 until circuit goes back to initial

state.

Step 1:

Step 2: Primitive Flow Table

. Page20

Step 3: A reduced flow table is obtained using Implication table and merger diagram.

The compatible pairs are (a,b) (a,c) (b,c) (b,e) (c,f) (d,e) (d,f) (e,f).

Merger Diagram:

The Maximal Compatibles are (a,b,c) (d,e,f) (c,f) (b,e).

. Page21

(c,f) and (b,e) can be removed. Since the remaining terms themselves cover all six states.

Step 4 : State Assignment

Step 5: Logic Diagram

Practice Problems:

. Page22

Design a sequential circuit with two D flip flops A and B and one input X. When X = 0, the state of

the circuit remains the same. When X = 1, the circuit goes through the state transitions from 00 to

10 to 11 to 01, back to 00 and then repeats. (Apr 2019)

REDUCTION OFSTATE AND FLOW TABLES

Explain in detail about reduction of state and flow tables. Dec.2012

The procedure for reducing the number of internal states in an asynchronous sequential circuit

resembles the procedurethat is used forsynchronous circuits.

Implication Table andImplied State

 The state-reduction procedure for completely specified state tables is based on an algorithm that

combinestwostatesinastatetableintooneaslongastheycanbeshowntobeequivalent.

 Twostates areequivalentif,foreachpossibleinput,theygiveexactlythesameoutputandgotothesamenext

states or to equivalent next states.

 Considerfor examplethestatetableshowninabovetable.

 Thepresentstatesaandbhavethesame outputforthesameinput.

 Theirnextstatesarec anddforx=0andband aforx=1.

 Ifwe canshow thatthe pair of states(c,d) are equivalent,thenthe pair ofstates(a ,b)

willalsobeequivalent,because they willhavethesameorequivalentnextstates.

 Whenthisrelationshipexists,wesaythat(a.b)imply (c,d)inthesensethatifaandbare

equivalentthenranddhavetobeequivalent.

 Similarly,fromthe lasttworowsofabovetable,wefindthatthepairofstales(c,d)implies

thepairofstates(a,b).

 The characteristicofequivalentstatesisthatif(a,b)imply (c,d)and(c,d)imply (a,b),thenbothpairsof

statesare equivalentthatis,aandbare equivalent,andsoare candd.

 Asaconsequence,thefour rows oftable can bereduced to tworows bycombining a and b into onestate

. Page23

and c and d into asecond state.

 The implicationtableisshowninFig.Ontheleftsidealongtheverticalarelistedallthestates

definedinthestatetableexceptthefirstandacrossthebottomhorizontallyarelistedallthestates exceptthelast.

 Theresultisadisplayofallpossiblecombinationsoftwostareswithasquareplacedin

theintersectionofarowandacolumnwhere thetwostatescanbetestedfor equivalence.Twostates

havingdifferent outputs forthe same input arenot equivalent.

Fig: Implication table

 Twostatesthatarenotequivalentaremarkedwithacross[X]inthecorrespondingsquarewhereas

theirequivalenceisrecordedwithacheckmark(').Someofthesquareshaveentriesofimplied

statesthatmustbeinvestigatedfurthertodeterminewhetherthey areequivalent.

 Thustablecanbe reducedfromsevenstatestofour onefor eachmember ofthe

precedingpartition.Thereducedstate tableis obtained byreplacingstateb bya and states e

andgbydand it is shown below,

. Page24

Merging oftheFlowTable

 Incompletelyspecifiedstatescanbecombinedtoreducethenumberofstateintheflowtable.Such stares

cannotbe called equivalentbecause theformaldefinitionof equivalencerequiresthatalloutputs and

nextstatesbe specified forallinputs.

 Instead, twoincompletely specified states that can be

combinedaresaidtobeCompatible.Theprocessthatmustbeappliedinordertofindasuitablegroup of

compatibles forthe purpose ofmerging a flow table can bedivided into threesteps:

1. Determine allcompatible pairs byusingthe implication table.

2. Find themaximal compatibles with the useof amergerdiagram.

3. Find a minimal collection of compatibles that covers allthe states andis closed.

CompatiblePairs-

 Theentriesineachsquareofprimitiveflowtablerepresentthenextstate

andoutputThedashesrepresenttheunspecifiedstatesoroutputs.

 Theimplicationtable

isusedtofmdcompatiblestatesjustasitisusedtofindequivalentstalesinthecompletely

specifiedcase.Theonly

differenceisthat,whencomparingrows,weareatlibertytoadjustthedashestofitany desired condition.

. Page25

The compatiblepairsare,

MaximalCompatibles

 Themaximal compatibleisagroupofcompatiblesthatcontainsallthe possiblecombinations of

compatible states. The maximal compatiblecanbeobtained from a merger diagram.

 The merger diagramisagraphinwhicheachstateisrepresented by adotplacedalongthecircumferenceofa

circle. Linesaredrawnbetweenany twocorrespondingdotsthatformacompatiblepair.

 Allpossible compatiblescanbeobtainedfromthemergerdiagramby

observingthegeometricalpatternsinwhich

statesareconnectedtoeachother.Anisolateddotrepresentsastatethatisnotcompatiblewithany

otherstate. A line representsa compatiblepair.Atriangleconstitutes a compatiblewith threestates.

. Page26

Themaximal compatiblesof fig (a)are

Themaximal compatiblesof fig (b)are

Closed-Covering Condition

 Theconditionthatmustbesatisfiedformergingrowsisthatthesetofchosencompatiblesmustcover

allthestatesandmustbeclosed.

 Thesetwillcoverallthestatesifitincludesallthestatesofthe originalstatetable.The closureconditionis

satisfiedifthereare noimpliedstatesorif theimplied states are

includedwithintheset.Aclosedsetofcompatiblesthatcoversallthestatesiscalledaclosed covering.

RACE -FREE STATE ASSIGNMENT

Explain in detail about race -free state assignment. May 2012,Dec. 2014

 Once areducedflow tablehasbeenderivedfor anasynchronoussequentialcircuit,thenextstepinthe

designistoassignbinary variablestoeachstablestate.

 Thisassignmentresultsinthetransformationof

theflowtableintoitsequivalenttransitiontable.Theprimaryobjectiveinchoosing aproperbinary state

assignmentisthepreventionofcriticalraces.

 Criticalracescanbeavoidedbymakingabinarystate assignmentinsuchawaythatonly

onevariablechangesatanygiventimewhenastatetransitionoccurs in the flow table.

. Page27

Three-RowFlow-Table Example

Fig: Three rowflowtable example

 Toavoidcriticalraces,wemustfindabinarystateassignmentsuchthatonly onebinaryvariable

changesduring eachstatetransition.

 Anattempttofindsuchanassignmentisshowninthetransition diagram.Statea isassignedbinary

00,andstatecisassignedbinary 11.

 Thisassignmentwillcausea

criticalraceduringthetransitionfromatocbecausetherearetwochangesinthebinary statevariables

andthetransitionfromatocmay occurdirectlyorpassthroughb.

 Notethatthetransitionfromctoaalsocausesaracecondition,butitisnoncriticalbecausethetransitiondoesn

otpassthroughother states

Fig:Flowtable with an extrarow

 Arace-freeassignmentcanbeobtainedifweaddanextra rowtotheflow table.Theuseofa fourthrow

doesnotincreasethenumberofbinarystatevariables,butitallowstheformationof cycles betweentwo

stablestates.

 Thetransitiontablecorrespondingtotheflowtablewiththeindicatedbinarystateassignmentisshown

inFig.

. Page28

 Thetwodashesinrowdrepresentunspecifiedstatesthatcanbeconsidereddon't-care conditions.

 However,caremustbetakennottoassign10tothesesquares,inordertoavoidthepossibility ofan unwanted

stablestatebeingestablishedin thefourth row.

Fig: Transitiontable

Four-RowFlow-Table Example

 A flow tablewith four rows requiresaminimum of two statevariables.

 Although arace-freeassignment issometimespossiblewithonly twobinary statevariables,inmany

casestherequirementofextrarows to avoid critical races willdictate theuse of threebinarystate

variables

Fig:Four-rowflow-table example

 Thefollowing figureshowsastateassignmentmapthatissuitableforany four-rowflowtable.Statesa,

b,canddaretheoriginalstatesande,fandgareextrastates.

 Thetransitionfromatodmustbe directedthroughtheextrastateetoproduceacyclesothatonly

onebinaryvariablechangesatatime.

Similarly,thetransitionfromctoaisdirectedthroughgandthetransitionfromdtocgoesthroughf.

 Byusingtheassignmentgivenby themap,thefour-rowtablecanbeexpandedtoaseven-rowtablethat is

freeofcritical races.

. Page29

Fig: Choosing extrarowsfor theflowtable

 Notethatalthoughtheflowtablehas sevenrowsthereareonlyfourstablestates.

 Theuncircledstatesin the three extra rowsaretheremerelyto providearace-freetransition between

thestablestates.

Fig: Stateassignment to modified flowtable

Multiple-RowMethod

 Themethodformakingrace-freestaleassignmentsbyaddingextrarowsintheflowtableisreferredto asthe

shared-rowmethod.

 A second methodcalled themultiple-rowmethodisnotasefficient, butis easiertoapply.Inmultiple-

rowassignmenteachstateintheoriginalrowtableisreplacedby twoor more combinationsofstate

variables.

. Page30

Fig:Multiple rowassignment

 Therearetwobinary statevariablesforeachstablestate,eachvariablebeingthelogicalcomplementof the

other.

 Forexample,the originalstatea is replacedwithtwoequivalentstates a1=000anda2=111.

Theoutputvalues,notshownheremustbethesameina1anda2.

 Notethata1 isadjacenttob1,c2and d1,anda2 isadjacenttoc1,

b2andd2,andsimilarlyeachstateisadjacenttothreestateswithdifferent letterdesignations.

 Theexpandedtableisformedbyreplacingeachrowoftheoriginaltablewithtworows.Inthemultiple-

rowassignment,thechange fromonestablestate10another willalwayscauseachangeofonly one

binarystate variable.

 Each stable stalehastwo binaryassignmentswith exactlythe sameoutput.

Practice Problems:

A sequential Circuit with two D flip flops A and B, two inputs X and Y, and one output Z is

specified by the following input equations:

A(t + 1) = x’y + xA

B(t + 1) = x’B + xA

Z = B

Draw the logic diagram of the circuit. Derive the state table and state diagram and state whether it

is a Mealy or a Moore machine. (Apr 2019)

HAZARDS

Discuss about the possible hazards and methods to avoid them in combinational circuits. (or) Explain

in detail about hazards. May 2011, Dec. 2013, Apr 2017, Nov 2017, Apr 2018, Nov 2018, Apr 2019

. Page31

 Hazardsareunwantedswitchingtransientsthatmay appearattheoutputofacircuitbecausedifferent

pathsexhibitdifferentpropagationdelays.

 Hazardsoccurincombinationalcircuits,wheretheymay causeatemporary falseoutputvalue.But

inasynchronous sequentialcircuits hazardsmay resultin a transitionto awrongstable state.

Types of Hazards

 Static Hazard

 Dynamic Hazard

 Essential Hazard

Static Hazard

 Static Hazard is a condition which results in a single momentary incorrect output due to change in a

single input variable when the output is expected to remain in the same state.

 The static hazard may be either static-0 or Static -1.

Hazards inCombinational Circuits

 Ahazardisaconditioninwhichachangeinasinglevariableproducesamomentary changeinoutput

when no changein output should occur.

Fig: Circuits with Hazards

 Assumethatallthreeinputsareinitially equalto1.Thiscausestheoutputofgate110be1,thatofgate

2tobe0andthatofthecircuittobe1.Nowconsiderachangeinx2from1to0.

 Thentheoutputof gate1changesto0and thatofgate2changesto1,leaving theoutputat

1.However,theoutputmay

. Page32

momentarilygoto0ifthepropagationdelaythroughtheinverteristakenintoconsideration.

 Thedelay in theinvertermaycausetheoutput ofgate1 to changeto 0 beforethe output of gate2

changes to1.

 Thetwo circuits shown in Figimplement theBoolean function in sum-of-products form:

 This type of implementation may cause the output to go to 0 when it should remain a 1. If however,

theCircuit is implemented instead in product-of-sums form namely,

then the output may momentarily go to 1 when it should remain 0. The first case is referred to a

static1-hazard and the second case as static 0-hazard.

 Athirdtypeofhazard,knownasdynamichazard,causestheoutputtochangethreeormoretimes

when itshould changefrom1 to 0 or from 0 to 1.

Fig: Types ofhazards

 The change in x2from1to0movesthecircuitfromminterm111tominterm101.The hazard exists

because the changein input results in a different product term coveringthe twominterm.

Fig: Illustrates hazardandits removal

 Minterm111iscoveredby theproducttermimplementedingate1andminterm101iscoveredbythe

producttermimplementedingate2.

 The remedy for eliminating a hazard is to enclose the two min terms

withanotherproducttermthatoverlapsbothgroupings. Thehazard-freecircuitobtainedbysucha

configurationisshowninfigure below.

 The extra gate inthecircuitgeneratesthe producttermx1x3.In

. Page33

general,hazardsincombinationalcircuitscanberemoved by coveringany twomintermsthatmay

producea hazardwithaproducttermcommontoboth.

 Theremovalofhazardsrequirestheadditionof redundantgates to thecircuit.

Hazards in SequentialCircuits

 Innormalcombinational-circuitdesignassociatedwithsynchronoussequentialcircuits,hazardsareof

noconcern,sincemomentaryerroneoussignalsare notgenerallytroublesome.

 However,ifamomentary incorrectsignalisfed backinanasynchronoussequentialcircuit,itmay

causethecircuittogotothe wrongstable state.

Fig: HazardinanAsynchronous sequential circuit

 Ifthe circuitis in total stable stateyx1x2=111 and inputx2 changesfromIto0, the next total stablestate

shouldbe110.However,because ofthehazard,outputYmay goto0momentarily.

 Ifthisfalsesignal

feedsbackintogate2beforetheoutputoftheinvertergoesto1,theoutputofgate2willremainat0

. Page34

andthecircuitwillswitchtotheincorrecttotalstablestate 010.

 Thismalfunctioncanbe eliminatedby adding an extragate.

Essential Hazards

 Essentialhazardiscausedby unequaldelaysalongtwoormorepathsthatoriginatefromthesame input.

 Anexcessivedelaythroughaninvertercircuitincomparisontothedelayassociatedwiththe feedback path

maycausesuchahazard.

 Essentialhazards cannotbecorrectedby addingredundantgatesasinstatichazards.The problemthat they

imposecanbecorrectedbyadjustingtheamountofdelay intheaffectedpath.

 Toavoidessential

hazards,eachfeedbackloopmustbehandledwithindividualcaretoensurethatthedelayinthe

feedbackpathislongenoughcomparedwithdelaysofothersignalsthatoriginate fromtheinput terminals.

. Page35

. Page36

. Page37

. Page38

Problems on hazards: (Nov 2018)

. Page39

. Page40

. Page41

. Page42

1

UNIT V MEMORY AND PROGRAMMABLE LOGIC 12

RAM – Memory Decoding – Error Detection and Correction - ROM -Programmable
Logic Array – Programmable Array Logic – Sequential Programmable Devices.

51 INTRODUCTION

A memory unit is a collection of storage cells with associated circuits needed

to transfer information in and out of the device The binary information is transferred

for storage and from which information is available when needed for processing

When data processing takes place, information from the memory is transferred to

selected registers in the processing unit Intermediate and final results obtained in the

processing unit are transferred back to be stored in memory

52 Units of Binary Data: Bits, Bytes, Nibbles and Words

As a rule, memories store data in units that have from one to eight bits The

smallest unit of binary data is the bit In many applications, data are handled in an 8-

bit unit called a byte or in multiples of 8-bit units The byte can be split into two 4-bit

units that are called nibbles A complete unit of information is called a word and

generally consists of one or more bytes Some memories store data in 9-bit groups; a

9-bit group consists of a byte plus a parity bit

53 Basic Semiconductor Memory Array

Each storage element in a memory can retain either a 1 or a 0 and is called a

cell Memories are made up of arrays of cells, as illustrated in Figure below using 64

cells as an example Each block in the memory array represents one storage cell, and

its location can be identified by specifying a row and a column

2

Programmable Logic Devices, Memory

A 64-cell memory array organized in three different ways

54 Memory Address and Capacity

The location of a unit of data in a memory array is called its address For

example, in Figure (a), the address of a bit in the 3-dimensional array is specified by

the row and column In Figure (b), the address of a byte is specified only by the row

in the 2-dimensional array So, as you can see, the address depends on how the

memory is organized into units of data Personal computers have random-access

memories organized in bytes This means that the smallest group of bits that can be

addressed is eight

Examples of memory address

3

Programmable Logic Devices, Memory

The capacity of a memory is the total number of data units that can be stored

For example, in the bit-organized memory array in Figure (a), the capacity is 64 bits

In the byte-organized memory array in Figure (b), the capacity is 8 bytes, which is

also 64 bits Computer memories typically have 256 MB (megabyte) or more of

internal memory

55 Basic Memory Operations

Since a memory stores binary data, data must be put into the memory and

data must be copied from the memory when needed The write operation puts data

into a specified address in the memory, and the read operation copies data out of a

specified address in the memory The addressing operation, which is part of both the

write and the read operations, selects the specified memory address

Data units go into the memory during a write operation and come out of the

memory during a read operation on a set of lines called the data bus As indicated in

Figure, the data bus is bidirectional, which means that data can go in either

directional (into the memory or out of the memory)

Block diagram of memory operation

For a write or a read operation, an address is selected by placing a binary code

representing the desired address on a set of lines called the address bus The address

code is decoded internally and the appropriate address is selected The number of

lines in the address bus depends on the capacity of the memory For example, a 15-bit

address code can select 32,768 locations (215) in the memory; a 16-bit address code

can select 65,536 locations (216) in the memory and so on

4

Programmable Logic Devices, Memory

In personal computers a 32-bit address bus can select 4,294,967,296 locations

(232), expressed as 4GB

551 Write Operation

To store a byte of data in the memory, a code held in the address register is

placed on the address bus Once the address code is on the bus, the address decoder

decodes the address and selects the specified location in the memory The memory

then gets a write command, and the data byte held in the data register is placed on

the data bus and stored in the selected memory address, thus completing the write

operation When a new data byte is written into a memory address, the current data

byte stored at that address is overwritten (replaced with a new data byte)

Illustration of the Write operation

552 Read Operation

A code held in the address register is placed on the address bus Once the

address code is on the bus, the address decoder decodes the address and selects the

specified location in the memory The memory then gets a read command, and a

"copy" of the data byte that is stored in the selected memory address is placed on the

data bus and loaded into the data register, thus completing the read operation When

a data byte is read from a memory address, it also remains stored at that address

This is called nondestructive read

5

Programmable Logic Devices, Memory

Illustration of the Read operation

56 Classification of Memories

There are two types of memories that are used in digital systems:

Random-Access Memory (RAM),

Read-Only Memory (ROM)

RAM (random-access memory) is a type of memory in which all addresses are

accessible in an equal amount of time and can be selected in any order for a read or

write operation All RAMs have both read and write capability Because RAMs lose

stored data when the power is turned off, they are volatile memories

ROM (read-only memory) is a type of memory in which data are stored

permanently or semi permanently Data can be read from a ROM, but there is no

write operation as in the RAM The ROM, like the RAM, is a random-access memory

but the term RAM traditionally means a random-access read/write memory Because

ROMs retain stored data even if power is turned off, they are nonvolatile memories

6

Programmable Logic Devices, Memory

Classification of memories

561 RANDOM-ACCESS MEMORIES (RAMS)

RAMs are read/write memories in which data can be written into or read

from any selected address in any sequence When a data unit is written into a given

address in the RAM, the data unit previously stored at that address is replaced by

the new data unit When a data unit is read from a given address in the RAM, the

data unit remains stored and is not erased by the read operation This nondestructive

read operation can be viewed as copying the content of an address while leaving the

content intact

A RAM is typically used for short-term data storage because it cannot retain

stored data when power is turned off

The two categories of RAM are the static RAM (SRAM) and the dynamic

RAM (DRAM) Static RAMs generally use flip-flops as storage elements and can

therefore store data indefinitely as long as dc power is applied Dynamic RAMs use

capacitors as storage elements and cannot retain data very long without the

capacitors being recharged by a process called refreshing Both SRAMs and DRAMs

will lose stored data when dc power is removed and, therefore, are classified as

volatile memories

Data can be read much faster from SRAMs than from DRAMs However,

DRAMs can store much more data than SRAMs for a given physical size and cost

because the DRAM cell is much simpler, and more cells can be crammed into a given

chip area than in the SRAM

7

Programmable Logic Devices, Memory

5611 Static RAM (SRAM)

Storage Cell:

All static RAMs are characterized by flip-flop memory cells As long as dc

power is applied to a static memory cell, it can retain a 1 or 0 state indefinitely If

power is removed, the stored data bit is lost

The cell is selected by an active level on the Select line and a data bit (l or 0) is

written into the cell by placing it on the Data in line A data bit is read by taking it

off the Data out line

Basic SRAM Organization:

Basic Static Memory Cell Array

The memory cells in a SRAM are organized in rows and columns All the cells

in a row share the same Row Select line Each set of Data in and Data out lines go to

each cell in a given column and are connected to a single data line that serves as

both an input and output (Data I/O) through the data input and data output buffers

SRAM chips can be organized in single bits, nibbles (4 bits), bytes (8 bits), or

multiple bytes (16, 24, 32 bits, etc) The memory cell array is arranged in 256 rows and

128 columns, each with 8 bits as shown below There are actually 215 = 32,768

addresses and each address contains 8 bits The capacity of this example memory is

32,768 bytes (typically expressed as 32 Kbytes)

Memory array configuration

8

Programmable Logic Devices, Memory

Operation:

The SRAM works as follows First, the chip select, CS, must be LOW for the

memory to operate Eight of the fifteen address lines are decoded by the row decoder

to select one of the 256 rows Seven of the fifteen address lines are decoded by the

column decoder to select one of the 128 8-bit columns

Memory block diagram

Read:

In the READ mode, the write enable input, WE‘ is HIGH and the output

enable, OE‗ is LOW The input tri state buffers are disabled by gate G1, and the

column output tristate buffers are enabled by gate G2 Therefore, the eight data bits

from the selected address are routed through the column I/O to the data lines (I/O 1

through I/O7), which are acting as data output lines

Write:

In the WRITE mode, WE‘ is LOW and OE‘ is HIGH The input buffers are

enabled by gate G1, and the output buffers are disabled by gate G2 Therefore the

eight input data bits on the data lines are routed through the input data control and

the column I/O to the selected address and stored

9

Programmable Logic Devices, Memory

Read and Write Cycles:

For the read cycle shown in part (a), a valid address code is applied to the

address lines for a specified time interval called the read cycle time, tWC Next, the

chip select (CS) and the output enable (DE) inputs go LOW One time interval after

the DE input goes LOW; a valid data byte from the selected address appears on the

data lines This time interval is called the output enable access time, tGQ Two other

access times for the read cycle are the address access time, tAQ, measured from the

beginning of a valid address to the appearance of valid data on the data lines and the

chip enable access time, tEQ, measured from the HIGH-to-LOW transition of CS to

the appearance of valid data on the data lines

During each read cycle, one unit of data, a byte in this case is read from the

memory

For the write cycle shown in Figure (b), a valid address code is applied to the

address lines for a specified time interval called the write cycle time, tWE Next, the

chip select (CS) and the write enable (WE) in puts go LOW The required time

interval from the beginning of a valid address until the WE input goes LOW is called

the address setup time, t s(A) The time that the WE input must be LOW is the write

pulse width The time that the input WE must remain LOW after valid data are

applied to the data inputs is designated t WD; the time that the valid input data must

remain on the data lines after the WE input goes HIGH is the data hold time, t h(D)

During each write cycle, one unit of data is written into the memory

10

Programmable Logic Devices, Memory

562 READ- ONLY MEMORIES (ROMS)

A ROM contains permanently or semi-permanently stored data, which can

be read from the memory but either cannot be changed at all or cannot be changed

without specialization equipment A ROM stores data that are used repeatedly in

system applications, such as tables, conversions, or programmed instructions for

system initialization and operation ROMs retain stored data when the power is OFF

and are therefore nonvolatile memories

The ROMs are classified as follows:

i. Masked ROM (ROM)

ii. Programmed ROM (PROM)

iii. Erasable PROM (EPROM)

iv. Electrically Erasable PROM (EEPROM)

5621 Masked ROM

The mask ROM is usually referred to simply as a ROM It is permanently

programmed during the manufacturing process to provide widely used standard

functions, such as popular conversions, or to provide user-specified functions Once

the memory is programmed, it cannot be changed

Most IC ROMs utilize the presence or absence of a transistor connection at a

row/column junction to represent a 1 or a 0 The presence of a connection from a row

line to the gate of a transistor represents a 1 at that location because when the row

line is taken HIGH; all transistors with a gate connection to that row line turn on

11

Programmable Logic Devices, Memory 511

and connect the HIGH (1) to the associated column lines

ROM Cells

At row/column junctions where there are no gate connections, the column lines

remain LOW (0) when the row is addressed

5622 PROM (Programmable Read-Only Memory)

The PROM (Programmable Read-only memory), comes from the

manufacturer unprogrammed and are custom programmed in the field to meet the

user‘s needs

A PROM uses some type of fusing process to store bits, in which a memory

link is burned open or left intact to represent a 0 or a 1 The fusing process is

irreversible; once a PROM is programmed, it cannot be changed

The fusible links are manufactured into the PROM between the source of each

cell's transistor and its column line In the programming process, a sufficient current

is injected through the fusible link to bum it open to create a stored O The link is left

intact for a stored 1 All drains are commonly connected to VDD

PROM array with fusible links

12

Programmable Logic Devices, Memory

Three basic fuse technologies used in PROMs are metal links, silicon links,

and pn junctions A brief description of each of these follows

1. Metal links are made of a material such as nichrome Each bit in the memory

array is represented by a separate link During programming, the link is either

"blown" open or left intact This is done basically by first addressing a given cell

and then forcing a sufficient amount of current through the link to cause it to

open When the fuse is intact, the memory cell is configured as a logic 1 and when

fuse is blown (open circuit) the memory cell is logic 0

2. Silicon links are formed by narrow, notched strips of polycrystalline silicon

Programming of these fuses requires melting of the links by passing a sufficient

amount of current through them This amount of current causes a high

temperature at the fuse location that oxidizes the silicon and forms insulation

around the now-open link

3. Shorted junction, or avalanche-induced migration, technology consists basically

of two pn junctions arranged back-to-back During programming, one of the

diode junctions is avalanched, and the resulting voltage and heat cause

aluminum ions to migrate and short the junction The remaining junction is then

used as a forward- biased diode to represent a data bit

5623 EPROM (Erasable Programmable ROM)

An EPROM is an erasable PROM Unlike an ordinary PROM, an EPROM can

be reprogrammed if an existing program in the memory array is erased first

An EPROM uses an NMOSFET array with an isolated-gate structure The

isolated transistor gate has no electrical connections and can store an electrical

charge for indefinite periods of time The data bits in this type of array are

represented by the presence or absence of a stored gate charge Erasure of a data bit is

a process that removes the gate charge

13

Programmable Logic Devices, Memory

Two basic types of erasable PROMs are the ultraviolet erasable PROM (UV

EPROM) and the electrically erasable PROM (EEPROM)

x UV EPROM:

You can recognize the UV EPROM device by the transparent quartz lid on the

package, as shown in Figure below The isolated gate in the FET of an ultraviolet

EPROM is "floating" within an oxide insulating material The programming process

causes electrons to be removed from the floating gate Erasure is done by exposure of

the memory array chip to high-intensity ultraviolet radiation through the quartz

window on top of the package

The positive charge stored on the gate is neutralized after several minutes to an

hour of exposure time In EPROM‘s, it is not possible to erase selective information,

when erased the entire information is lost The chip can be reprogrammed

It is ideally suited for product development, college laboratories, etc

Ultraviolet Erasable PROM

During programming, address and datas are applied to address and data pins

of the EPROM The program pulse is applied to the program input of the EPROM

The program pulse duration is around 50msec and its amplitude depends on

EPROM IC It is typically 115V to 25V

In EPROM, it is possible to program any location at any time- either

individually, sequentially or at random

5624 EEPROM (Electrically Erasable PROM)

The EEPROM (Electrically Erasable PROM), also uses MOS circuitry Data is

stored as charge or no charge on an insulating layer, which is made very thin (<

200Å) Therefore a voltage as low as 20- 25V can be used to move charges across the

thin barrier in either direction for programming or erasing ROM

14

Programmable Logic Devices, Memory

An electrically erasable PROM can be both erased and programmed with

electrical pulses Since it can be both electrically written into and electrically erased,

the EEPROM can be rapidly programmed and erased in-circuit for reprogramming

It allows selective erasing at the register level rather than erasing all the

information, since the information can be changed by using electrical signals

It has chip erase mode by which the entire chip can be erased in 10

msec Hence EEPROM‘s are most expensive

Advantages of RAM:

1. Fast operating speed (< 150 nsec),

2. Low power dissipation (< 1mW),

3. Economy,

4. Compatibility,

5. Non-destructive read-out

Advantages of ROM:

1. Ease and speed of design,

2. Faster than MSI devices (PLD and FPGA)

3. The program that generates the ROM contents can easily be structured to

handle unusual or undefined cases,

4. A ROM‘s function is easily modified just by changing the stored

pattern, usually without changing any external connections,

5. More economical

15

Programmable Logic Devices, Memory

Disadvantages of ROM:

1. For functions more than 20 inputs, a ROM based circuit is

impractical because of the limit on ROM sizes that are available

2. For simple to moderately complex functions, ROM based circuit may be

costly: consume more power; run slower

Comparison between RAM and ROM:

SNo RAM ROM

RAMs have both read and write
1 ROMs have only read operation capability

2 RAMs are volatile memories ROMs are non-volatile memories

3
They lose stored data when the They retain stored data even if power is

power is turned OFF turned off

4
RAMs are available in both RAMs are available in both bipolar and

bipolar and MOS technologies MOS technologies

5 Types: SRAM, DRAM, EEPROM Types: PROM, EPROM

Comparison between SRAM and DRAM:

SNo Static RAM Dynamic RAM

1 It contains less memory cells It contains more memory cells per unit area

 per unit area

2 Its access time is less, hence Its access time is greater than static RAM

 faster memories

3 It consists of number of flip- It stores the data as a charge on the capacitor

 flops Each flip-flop stores It consists of MOSFET and capacitor for each

 one bit cell

4 Refreshing circuitry is not Refreshing circuitry is required to maintain

 required the charge on the capacitors every time after

 every few milliseconds Extra hardware is

 required to control refreshing

5 Cost is more Cost is less

16

 Programmable Logic Devices, Memory

 Comparison of Types of Memories:

 Memory
Non- Volatile

High Density

 One- Tra nsistor In-s yste m

type

cell

writability

 SRAM No No No Yes

 DRAM No Yes Yes Yes

 ROM Yes Yes Yes No

 EPROM Yes Yes Yes No

 EEPROM Yes No No Yes

58 PROGRAMMABLE LOGIC DEVICES:

581 INTRODUCTION:

A combinational PLD is an integrated circuit with programmable gates

divided into an AND array and an OR array to provide an AND-OR sum of product

implementation The PLD‘s can be reprogrammed in few seconds and hence gives

more flexibility to experiment with designs Reprogramming feature of PLDs also

makes it possible to accept changes/modifications in the previously design circuits

The advantages of using programmable logic devices are:

1. Reduced space requirements

2. Reduced power requirements

3. Design security

4. Compact circuitry

5. Short design cycle

6. Low development cost

7. Higher switching speed

8. Low production cost for large-quantity production

17

Programmable Logic Devices, Memory

According to architecture, complexity and flexibility in programming in PLD‘s

are classified as—

x PROMs : Programmable Read Only memories,

x PLAs : Programmable Logic Arrays,

x PAL : Programmable Logic Array,

x FPGA : Field Programmable Gate Arrays,

x CPLDs : Complex Progra mma ble Logic Devices

Programmable Arrays:

All PLDs consists of programmable arrays A programmable array is

essentially a grid of conductors that form rows and columns with a fusible link at

each cross point Arrays can be either fixed or programmable

The OR Array:

It consists of an array of OR gates connected to a programmable matrix with

fusible links at each cross point of a row and column, as shown in the figure below

The array can be programmed by blowing fuses to eliminate selected variables from

the output functions For each input to an OR gate, only one fuse is left intact in order

to connect the desired variable to the gate input Once the fuse is blown, it cannot be

reconnected

Another method of programming a PLD is the antifuse, which is the opposite of the

fuse Instead of a fusible link being broken or opened to program a variable, a

normally open contact is shorted by ―melting‖ the antifuse material to form a

connection

18

Programmable Logic Devices, Memory

An example of a basic programmable OR array

The AND Array:

This type of array consists of AND gates connected to a programmable matrix

with fusible links at each cross points, as shown in the figure below Like the OR

array, the AND array can be programmed by blowing fuses to eliminate selected

variables from the output functions For each input to an AND gate, only one fuse is

left intact in order to connect the desired variable to the gate input Also, like the OR

array, the AND array with fusible links or with antifuses is one-time programmable

An example of a basic programmable AND array

19

Programmable Logic Devices, Memory

582 Classification of PLDs

There are three major types of combinational PLDs and they differ

in the placement of the programmable connections in the AND-OR array

The configuration of the three PLDs is shown below

1 Programmable Read-Only Memory (PROM):

A PROM consists of a set of fixed (non-programmable) AND array

constructed

as a decoder and a programmable OR array The programmable OR

gates implement the Boolean functions in sum of minterms

(a) Programmable read- only memory (PROM)

2. Programmable Logic Array (PLA):

A PLA consists of a programmable AND array and a programmable OR

array

The product terms in the AND array may be shared by any OR gate to

provide the required sum of product implementation

The PLA is developed to overcome some of the limitations of the PROM The

PLA is also called an FPLA (Field Programmable Logic Array) because the user in

the field, not the manufacturer, programs it

Programmable Logic Array (PLA)

20

Programmable Logic Devices, Memory

3 Programmable Array Logic (PAL):

The basic PAL consists of a programmable AND array and a fixed OR array

The AND gates are programmed to provide the product terms for the Boolean

functions, which are logically summed in each OR gate

It is developed to overcome certain disadvantages of the PLA, such as longer

delays due to the additional fusible links that result from using two programmable

arrays and more circuit complexity

Programmable Array Logic (PAL)

Array logic Symbols:

PLDs have hundreds of gates interconnected through hundreds of

electronic fuses It is sometimes convenient to draw the internal logic of such

device in a compact form referred to as array logic

21

Programmable Logic Devices, Memory

583 PROGRAMMABLE ROM:

PROMs are used for code conversions, generating bit patterns for characters

and as look-up tables for arithmetic functions

As a PLD, PROM consists of a fixed AND-array and a programmable OR

array The AND array is an n-to-2n decoder and the OR array is simply a collection of

programmable OR gates The OR array is also called the memory array The decoder

serves as a minterm generator The n-variable minterms appear on the 2n lines at the

decoder output The 2n outputs are connected to each of the ‗m‘ gates in the OR array

via programmable fusible links

2n x m PROM

584 Implementation of Combinational Logic Circuit using PROM

1. Using PROM realize the following expression

F1 (A, B, C) = ∑m (0, 1, 3, 5, 7)

F2 (A, B, C) = ∑m (1, 2, 5, 6)

Step1: Truth table for the given function

A B C F1 F2

0 0 0 1 0

0 0 1 1 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 0

1 0 1 1 1

1 1 0 0 1

1 1 1 1 0

22

Programmable Logic Devices, Memory

Step 2: PROM diagram

2. Design a combinational circuit using PROM The circuit accepts 3-bit binary and

generates its equivalent Excess-3 code

Step1: Truth table for the given function

B2 B1 B0 E3 E2 E1 E0

0 0 0 0 0 1 1

0 0 1 0 1 0 0

0 1 0 0 1 0 1

0 1 1 0 1 1 0

1 0 0 0 1 1 1

1 0 1 1 0 0 0

1 1 0 1 0 0 1

1 1 1 1 0 1 0

23

Programmable Logic Devices, Memory

Step 2: PROM diagram

585 PROGRAMMABLE LOGIC ARRAY: (PLA)

The PLA is similar to the PROM in concept except that the PLA does not

provide full coding of the variables and does not generate all the minterms

The decoder is replaced by an array of AND gates that can be programmed to

generate any product term of the input variables The product term are then

connected to OR gates to provide the sum of products for the required Boolean

functions The AND gates and OR gates inside the PLA are initially fabricated with

fuses among them The specific boolean functions are implemented in sum of

products form by blowing the appropriate fuses and leaving the desired connections

24

Programmable Logic Devices, Memory

PLA block diagram

The block diagram of the PLA is shown above It consists of ‗n‘ inputs, ‗m‘

outputs, ‗k‘ product terms and ‗m‘ sum terms The product terms constitute a group of ‗k‘

AND gates and the sum terms constitute a group of ‗m‘ OR gates Fuses are inserted

between all ‗n‘ inputs and their complement values to each of the AND gates Fuses are

also provided between the outputs of the AND gate and the inputs of the OR gates

Another set of fuses in the output inverters allow the output function to be generated

either in the AND-OR form or in the AND-OR-INVERT form With the inverter fuse in place,

the inverter is bypassed, giving an AND-OR implementation With the fuse blown, the

inverter becomes part of the circuit and the function is implemented in the AND-OR-

INVERT form

586 Implementation of Combinational Logic Circuit using PLA

1. Implement the combinational circuit with a PLA having 3 inputs,

4 product terms and 2 outputs for the functions

F1 (A, B, C) = ∑m (0, 1, 2, 4)

F2 (A, B, C) = ∑m (0, 5, 6, 7)

Solution:

Step 1: Truth table for the given functions

A B C F1 F2

0 0 0 1 1

0 0 1 1 0

0 1 0 1 0

0 1 1 0 0

25

 Programmable Logic Devices, Memory

 1 0 0 1 0

 1 0 1 0 1

 1 1 0 0 1

 1 1 1 0 1

Step 2: K-map Simplification

With this simplification, total number of product term is 6 But we require only

4 product terms Therefore find out F1‘ and F2‘

Now select, F1‘ and F2, the product terms are AC, AB, BC and A‘B‘C‘

Step 3: PLA Program table:

Product

Input
s

Outputs

term

A

B

C

F1 (C)

F2 (T)

AB 1 1 1 - 1 1

AC 2 1 - 1 1 1

BC 3 - 1 1 1 -

A‘B‘C‘ 4 0 0 0 - 1

26

Programmable Logic Devices, Memory

In the PLA program table, first column lists the product terms numerically as

1, 2, 3, and 5 The second column (Inputs) specifies the required paths between the

AND gates and the inputs For each product term, the inputs are marked with 1, 0, or

- (dash) If a variable in the product form appears in its normal form, the

corresponding input variable is marked with a 1 If it appears complemented, the

corresponding input variable is marked with a 0 If the variable is absent in the

product term, it is marked with a dash (-) The third column (output) specifies the

path between the AND gates and the OR gates The output variables are marked with

1‘s for all those product terms that formulate the required

function Step 4: PLA Diagram

The PLA diagram uses the array logic symbols for complex symbols Each

input and its complement is connected to the inputs of each AND gate as indicated

by the intersections between the vertical and horizontal lines The output of the AND

gate are connected to the inputs of each OR gate The output of the OR gate goes to

an EX-OR gate where the other input can be programmed to receive a signal equal to

either logic 1 or 0

27

Programmable Logic Devices, Memory

The output is inverted when the EX-OR input is connected to 1 ie, (x †1= x’)

The output does not change when the EX-OR input is connected to 0 ie, (x †0= x)

2. Implement the combinational circuit with a PLA having 3 inputs,

4 product terms and 2 outputs for the functions

F1 (A, B, C) = ∑m (3, 5, 6, 7)

F2 (A, B, C) = ∑m (0, 2, 4, 7)

Solution:

Step 1: Truth table for the given functions

A B C F1 F2

0 0 0 0 1

0 0 1 0 0

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Step 2: K-map Simplification

With this simplification, total number of product term is 6 But we require only

4 product terms Therefore find out F1‘ and F2‘

28

Programmable Logic Devices, Memory

Now select, F1‘ and F2, the product terms are B’C’, A’C’, A’B’ and ABC

Step 3: PLA Program table

 Input
 Product s Outputs

term

 A B C F1 (C) F2 (T)

B‘C‘ 1 - 0 0 1 1

A‘C‘ 2 0 - 0 1 1

A‘B‘ 3 0 0 - 1 -

ABC 4 1 1 1 - 1

Step 4: PLA Diagram

29

Programmable Logic Devices, Memory

3. Implement the following functions using PLA

F1 (A, B, C) = ∑m (1, 2, 4, 6)

F2 (A, B, C) = ∑m (0, 1, 6, 7)

F3 (A, B, C) = ∑m (2, 6)

Solution:

Step 1: Truth table for the given functions

A B C F1 F2 F3

0 0 0 0 1 0

0 0 1 1 1 0

0 1 0 1 0 1

0 1 1 0 0 0

1 0 0 1 0 0

1 0 1 0 0 0

1 1 0 1 1 1

1 1 1 0 1 0

Step 2: K-map Simplification

30

 Programmable Logic Devices, Memory

 Step 3: PLA Program table

 Input

 Product s Outputs

term

 A B C F1 (T) F2 (T) F3 (T)

 A‘B‘C 1 0 0 1 1 - -

 AC‘ 2 1 - 0 1 - -

 BC‘ 3 - 1 0 1 - 1

 A‘B‘ 4 0 0 - - 1 -

 AB 5 1 1 - - 1 -

Step 4: PLA Diagram

4. A combinational circuit is designed by the

function F1 (A, B, C) = ∑m (3, 5, 7)

F2 (A, B, C) = ∑m (4, 5, 7)

31

Programmable Logic Devices, Memory

Solution:

Step 1: Truth table for the given functions

A B C F1 F2

0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 1 1 1 0

1 0 0 0 1

1 0 1 1 1

1 1 0 0 0

1 1 1 1 1

Step 2: K-map Simplification

Step 3: PLA Program table

Product

Input
s

Outputs

term

A

B

C

F1 (C) F2 (T)

AC 1 1 - 1 1 1

BC 2 - 1 1 1 -

AB‘ 3 1 0 - - 1

Step 4: PLA Diagram

32

Programmable Logic Devices, Memory

5. A combinational circuit is defined by the

functions, F1 (A, B, C) = ∑m (1, 3, 5) F2

(A, B, C) = ∑m (5, 6, 7)

Implement the circuit with a PLA having 3 inputs, 3 product terms and

2 outputs

Solution:

Step 1: Truth table for the given functions

A B C F1 F2

0 0 0 0 0

0 0 1 1 0

0 1 0 0 0

0 1 1 1 0

1 0 0 0 0

1 0 1 1 1

1 1 0 0 1

1 1 1 0 1

33

Programmable Logic Devices, Memory

Step 2: K-map Simplification

With this simplification, total number of product term is 5 But we require only 3

product terms Therefore find out F1‘ and F2‘

Now select, F1‘ and F2, the product terms are AC, AB and C’

Step 3: PLA Program table

 Input
Product s Outputs

term A B C F1 (C) F2 (T)

AB 1 1 1 - 1 1

C‘ 2 - - 0 1 -

AC 3 1 - 1 - 1

Step 4: PLA Diagram

34

Programmable Logic Devices, Memory

6. A combinational circuit is defined by the

functions, F1 (A, B, C) = ∑m (0, 1, 3, 4)

F2 (A, B, C) = ∑m (1, 2, 3, 4, 5)

Implement the circuit with a PLA having 3 inputs, 4 product terms and

2 outputs

Solution:

Step 1: Truth table for the given functions

A B C F1 F2

0 0 0 1 0

0 0 1 1 1

0 1 0 0 1

0 1 1 1 1

1 0 0 1 1

1 0 1 0 1

1 1 0 0 0

1 1 1 0 0

35

Programmable Logic Devices, Memory

Step 2: K-map Simplification

The product terms are B’C’, A’C, AB’ and A’B

Step 3: PLA Program table

 Input

 Product s Outputs
 term

A B C F1 (T) F2 (T)

B‘C‘ 1 - 0 0 1 -
A‘C 2 0 - 1 1 1

AB‘ 3 1 0 - - 1
A‘B 4 0 1 - - 1

Step 4: PLA Diagram

36

Programmable Logic Devices, Memory

7. A combinational logic circuit is defined by the function,

F (A, B, C, D) = ∑m (3, 4, 5, 7, 10, 14, 15)

G (A, B, C, D) = ∑m (1, 5, 7, 11, 15)

Implement the circuit with a PLA having 4 inputs, 6 product terms and 2 outputs

Solution:

Step 1: Truth table for the given functions

A B C D F G

0 0 0 0 0 0

0 0 0 1 0 1

0 0 1 0 0 0

0 0 1 1 1 0

0 1 0 0 1 0

0 1 0 1 1 1

0 1 1 0 0 0

0 1 1 1 1 1

1 0 0 0 0 0

1 0 0 1 0 0

1 0 1 0 1 0

1 0 1 1 0 1

1 1 0 0 0 0

1 1 0 1 0 0

1 1 1 0 1 0

1 1 1 1 1 1

Step 2: K-map Simplification

37

Programmable Logic Devices, Memory

The product terms are A‘BC‘, A‘CD, BCD, ACD‘, A‘C‘D, ACD

Step 3: PLA Program table

 Product Inputs Outputs

term

 A B C D F (T) G (T)

 A‘BC‘ 1 0 1 0 - 1 -

 A‘CD 2 0 - 1 1 1 -

 BCD 3 - 1 1 1 1 1

 ACD‘ 4 1 - 1 0 1 -

 A‘C‘D 5 0 - 0 1 - 1

 ACD 6 1 - 1 1 - 1

Step 4: PLA Diagram

38

Programmable Logic Devices, Memory

8 Design a BCD to Excess-3 code converter and implement using suitable PLA

Solution:

Step 1: Truth table of BCD to Excess-3 converter is shown below,

Decima l
 BCD code Excess-3 code

 B3 B2 B1 B0 E3 E2 E1 E0

0 0 0 0 0 0 0 1 1

1 0 0 0 1 0 1 0 0

2 0 0 1 0 0 1 0 1

3 0 0 1 1 0 1 1 0

4 0 1 0 0 0 1 1 1

5 0 1 0 1 1 0 0 0

6 0 1 1 0 1 0 0 1

7 0 1 1 1 1 0 1 0

8 1 0 0 0 1 0 1 1

9 1 0 0 1 1 1 0 0

Step 2: K-map Simplification

The product terms are B3, B2B0, B2B1, B2B1’B0’, B2’B0, B2’B1, B1’B0’, B1B0, B0’

39

Programmable Logic Devices, Memory

Step 3: PLA Program table

Product Inputs Outputs

terms B3 B2 B1 B0 E3 (T) E2 (T) E1 (T) E0 (T)

B 3 1 1 - - - 1 - - -

B2B0 2 - 1 - 1 1 - - -

B2B1

3 - 1 1 - 1 - - -

B2B1‘B0‘

 4 - 1 0 0 - 1 - -

B2‘B0

5 - 0 - 1 - 1 - -

B2‘B1

6 - 0 1 - - 1 - -

B1‘B 0‘

 7 - - 0 0 - - 1 -

B1B0

8 - - 1 1 - - 1 -

B0‘

 9 - - - 0 - - - 1

Step 4: PLA Diagram

40

Comparison between PROM, PLA, and PAL:

SNo PROM PLA PAL

 AND array is fixed Both AND and OR OR array is fixed and

1 and OR array is arrays are AND array is

 programmable programmable programmable

2
Cheaper and simpler

Costliest and complex

Cheaper and simpler

to use

All minterms are

AND array can be AND array can be

3 programmed to get programmed to get

decoded

desired minterms desired minterms

 Only Boolean
Any Boolean

functions in standard Any Boolean functions

functions in SOP form

4 SOP form can be in SOP form can be

can be implemented

implemented using implemented using PLA

using PLA

PROM

